Features

- Supply Voltage: 5 V
- Low Power Consumption: 15 mA/5 V
- Output Level and Spurious Products Adjustable (Optional)
- Excellent Sideband Suppression by Means of Duty Cycle Regeneration of the LO Input Signal
- Phase-control Loop for Precise 90° Phase Shifting
- Power-down Mode
- Low LO Input Level: -15 dBm
- 50- Ω Single-ended LO and RF Port
- LO Frequency Range of 30 MHz to 300 MHz

Benefits

$300-\mathrm{MHz}$ Quadrature Modulator

Description

The IC U2793B is a $300-\mathrm{MHz}$ quadrature modulator that uses Atmel's advanced UHF process. It features low current consumption, single-ended RF ports and adjustmentfree application, which makes the device suitable for all digital radio systems, e.g., GSM, PCN, JDC and WLAN. As an option, output level and spurious products are adjustable at pins 19 and 20. In conjunction with Atmel's U2795B mixer, an up-converter up to 2 GHz can be realized.

Figure 1. Block Diagram

Pin Configuration

Figure 2. Pinning SSO20

Pin Description

Pin	Symbol	Function
1	PU	Power-up input
2	ACGND	AC ground
3	GND	Ground
4	RFO	RF output
5	ACGND	AC ground
6	VS	Supply voltage
7	VS	Supply voltage
8	SPU	Settling time power-up
9	BBAI	Baseband input A
10	$\overline{\text { BBAI }}$	Baseband input A inverse
11	BBBI	Baseband input B
12	$\overline{\text { BBBI }}$	Baseband input B inverse
13	VREF	Reference voltage (2.5 V)
14	LOI	Input LO
15	$\overline{\text { LOI }}$	Input LO inverse, typically grounded
16	GND	Ground
17	GND	Ground
18	GND	Ground
19	LP2	Output low pass and power control
20	LP1	Output low pass and power control

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameters	Symbol	Value	Unit
Supply voltage	V_{S}	6	V
Input voltage	V_{i}	0 to V_{S}	V
Junction temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\mathrm{Stg}}$	-40 to +125	${ }^{\circ} \mathrm{C}$

Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient SSO20	$\mathrm{R}_{\mathrm{thJA}}$	140	K/W

Operating Range

Parameters	Symbol	Value	Unit
Supply voltage	V_{S}	4.5 to 5.5	V
Ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	-40 to +85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Test conditions (unless otherwise specified); $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C}$, referred to test circuit.
System impedance $\mathrm{Zo}=50 \Omega, \mathrm{f}_{\mathrm{LO}}=150 \mathrm{MHz}, \mathrm{P}_{\mathrm{LO}}=-15 \mathrm{dBm}, \mathrm{V}_{\mathrm{BBi}}=1.0 \mathrm{~V}_{\mathrm{pp}}$, differential

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Typ.	Max.	Unit	Type*
1.1	Supply voltage range		6,7	V_{S}	4.5	5	5.5	V	A
1.2	Supply current		6,7	I_{s}		15		mA	A
2	Baseband Inputs, Pin 9-10, 11-12								
2.1	Input-voltage range (differential)			$V_{\text {BBi }}$		1000	1500	mVpp	D
2.2	Input impedance			$\mathrm{Z}_{\mathrm{BBi}}$		30		$\mathrm{k} \Omega$	D
2.3	Input-frequency range			$\mathrm{f}_{\mathrm{BBi}}$	0		50	MHz	D
3	LO Input, Pins 14 and 15								
3.1	Frequency range			$\mathrm{f}_{\text {LOi }}$	30		300	MHz	D
3.2	Input level ${ }^{(1)}$			$\mathrm{P}_{\text {LOi }}$		-15	-5	dBm	D
3.3	Input impedance			$\mathrm{Z}_{\text {iLO }}$		(2)		Ω	D
3.4	Voltage standing wave ratio			$\mathrm{VSWR}_{\text {Lo }}$		3.5			D
3.5	Duty-cycle range			$\mathrm{DCR}_{\text {LO }}$	0.4		0.6		D

Notes: 1. Required LO level is a function of the LO frequency.
2. The LO input impedance is consisting of a 50Ω resistor in series with a 15 pF capacitor.
3. With the pins 19 and 20 spurious performance especially for low frequency application can be improved by adding a chip capacitor between LP1 and LP2. In conjunction with a parallel resistor the output level can be adjusted to the following mixer stage without degration of LO suppression and noise performance which would decrease if the I/Q input level is reduced
4. For $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}=4.5 \mathrm{~V}$ to 5.5 V

Electrical Characteristics (Continued)

Test conditions (unless otherwise specified); $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, referred to test circuit.
System impedance $\mathrm{Zo}=50 \Omega, \mathrm{f}_{\mathrm{LO}}=150 \mathrm{MHz}, \mathrm{P}_{\mathrm{LO}}=-15 \mathrm{dBm}, \mathrm{V}_{\mathrm{BBi}}=1.0 \mathrm{~V}_{\mathrm{pp}}$, differential (Continued)

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Typ.	Max.	Unit	Type*
4	RF Output, Pin 4								
4.1	Output level	$\begin{array}{\|l} \hline \mathrm{f}_{\mathrm{LO}}=150 \mathrm{MHz}, \\ \mathrm{~V}_{\mathrm{BBi}}=1 \mathrm{~V}_{\mathrm{pp}}, \text { differential } \\ \mathrm{f}_{\mathrm{LO}}=50 \mathrm{MHz}, \\ \mathrm{~V}_{\mathrm{BBi}}=0.3 \mathrm{~V}_{\mathrm{pp}}, \text { differential } \\ \hline \end{array}$		$\mathrm{P}_{\text {RFo }}$	-3	$\begin{gathered} -1 \\ 0 \end{gathered}$	+2	dBm	A/B
4.2	LO suppression	$P_{\text {LO }}=-20 \mathrm{dBM}$		$\mathrm{LO}_{\text {RFO }}$	32	45		dB	A
4.3	Voltage standing wave ratio			$\mathrm{VSWR}_{\text {RF }}$		1.4	2		D
4.4	Sideband suppression ${ }^{(3)}$			SBS ${ }_{\text {RFo }}$	35	45		dB	A
4.5	Phase error ${ }^{(4)}$			Pe		<1		deg	D
4.6	Amplitude error			Ae		$< \pm 0.25$		dB	D
4.7	Noise floor	$\begin{aligned} & \mathrm{V}_{\mathrm{BBi}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{BBi}}=3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{BBi}}=\mathrm{V}_{\mathrm{BBi}}=2.5 \mathrm{~V} \end{aligned}$		N_{FL}		$\begin{aligned} & -137 \\ & -143 \end{aligned}$		$\mathrm{dBm} / \mathrm{Hz}$	D
5	Power-up Mode								
5.1	Supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{PU}} \leq 0.5 \mathrm{~V} \text {, pins } 6,7 \\ & \mathrm{~V}_{\mathrm{PU}}=1 \mathrm{~V} \end{aligned}$		$\mathrm{I}_{\text {PU }}$		10	1	$\mu \mathrm{A}$	D
5.2	Settling time	Pins 1 to $4, \mathrm{C}_{\text {SPU }}=100 \mathrm{pF}$ $C_{\mathrm{LO}}=100 \mathrm{pF}, \mathrm{C}_{\mathrm{RFo}}=1 \mathrm{nF}$		$\mathrm{t}_{\text {SPU }}$		10		$\mu \mathrm{s}$	D
6	Switching Voltage, Pin 1								
6.1	Power on			$\mathrm{V}_{\text {PUoN }}$	4			V	D
7	Reference Voltage, Pin 13								
7.1	Voltage range			$V_{\text {Ref }}$	2.375	2.5	2.625	V	A
7.2	Output impedance			$\mathrm{Zo}_{\text {Ref }}$		30		Ω	D

Notes: 1. Required LO level is a function of the LO frequency.
2. The LO input impedance is consisting of a 50Ω resistor in series with a 15 pF capacitor.
3. With the pins 19 and 20 spurious performance especially for low frequency application can be improved by adding a chip capacitor between LP1 and LP2. In conjunction with a parallel resistor the output level can be adjusted to the following mixer stage without degration of LO suppression and noise performance which would decrease if the I/Q input level is reduced
4. For $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}=4.5 \mathrm{~V}$ to 5.5 V

Figure 3. Reference Voltage versus $\mathrm{T}_{\mathrm{amb}}$

Figure 4. OIP3 versus $\mathrm{T}_{\mathrm{amb}}, \mathrm{LO}=150 \mathrm{MHz}$, Level -10 dBm

Figure 5. Supply Current versus $\mathrm{T}_{\text {amb }}$

Figure 6. Recommended LO Power Range versus LO Frequency at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$

Figure 7. Output Power versus $\mathrm{T}_{\text {amb }}$

Figure 8. Typical Output Power versus LO Frequency at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$, $V_{\text {BBi }}=250 \mathrm{mV}$ (Differential)

Figure 9. Typical Required $\mathrm{V}_{\text {BBi }}$ Input Signal (Differential) versus LO Frequency for $P_{O}=1 d B m$ and $P_{O}=-3 d B m$

Figure 10. Evaluation Board Circuitry

Part List

$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{6}$	1 nF
$\mathrm{C}_{7}, \mathrm{C}_{8}$	100 pF
C_{5}	100 nF
$\mathrm{C}_{9}, \mathrm{R}_{1}$	1 pF to 10 pF
$\overline{=}$	$50-\Omega$ Microstrip
----	optional

The above listed components result in a PD settling time of $<20 \mu \mathrm{~s}$. The use of other component values will require consideration for time requirements in burst-mode applications.

Figure 11. PCB Layout Evaluation Board

Application Circuits Bias network for AC-coupled baseband inputs $\left(V_{B A}, V_{B B}\right)$.
$R_{1}=2.5 \mathrm{k} \Omega, R_{2} \leq 10 \mathrm{k} \Omega$ for $\geq 35 \mathrm{~dB}$ LO suppression which is in reference to $<2 \mathrm{mV}$ input offset.

Figure 12. Application Circuit with AC-coupled Baseband Inputs

Figure 13. Application Circuit with DC-coupled Baseband Inputs

Ordering Information

Extended Type Number	Package	Remarks
U2793B-MFS	SSO20	Tube
U2793B-MFSG3	SSO20	Taped and reeled
U2793B-NFSH	SSO20	Tube, lead free
U2793B-NFSG3H	SSO20	Taped and reeled, lead free

Package Information

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
$\mathrm{CH}-1705$ Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2004. All rights reserved.

Atmel ${ }^{\circledR}$ and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries.
Other terms and product names may be the trademarks of others.

