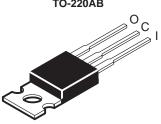
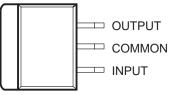

SLVS056E - MAY 1976 - REVISED JULY 1999

- **3-Terminal Regulators**
- Output Current up to 1.5 A
- Internal Thermal-Overload Protection
- **High Power-Dissipation Capability**
- Internal Short-Circuit Current Limiting
- **Output Transistor Safe-Area Compensation**
- **Direct Replacements for Fairchild µA7800** Series

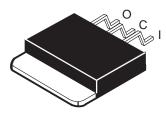
description

This series of fixed-voltage monolithic integrated-circuit voltage regulators is designed for a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. Each of these regulators can deliver up to 1.5 A of output current. The internal current-limiting and thermal-shutdown features of these regulators essentially make them immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents, and also can be used as the power-pass element in precision regulators.


The µA7800C series is characterized for operation over the virtual junction temperature range of 0°C to 125°C.


KC PACKAGE

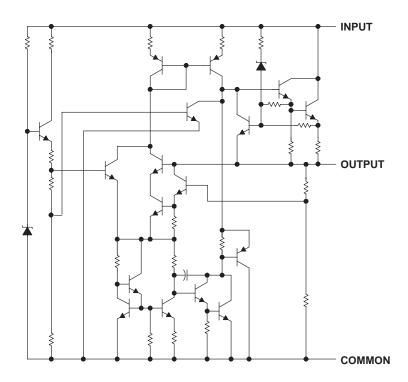
The COMMON terminal is in electrical contact with the mounting base.


TO-220AB

The COMMON terminal is in electrical contact with the mounting base.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty Production processing does not necessarily include testing of all parameters.


Copyright © 1999, Texas Instruments Incorporated

SLVS056E - MAY 1976 - REVISED JULY 1999

_		AVAILABLE OPTIONS		
		PACKAGED [DEVICES	CHIP
Тј	VO(NOM) (V)	PLASTIC FLANGE-MOUNT (KC)	HEAT-SINK MOUNTED (KTE)	FORM (Y)
	5	μA7805CKC	μA7805CKTE	μA7805Y
	6	μA7806CKC	μA7806CKTE	μA7806Y
	8	μA7808CKC	μA7808CKTE	μA7808Y
	8.5	μA7885CKC	μA7885CKTE	μA7885Y
0°C to 125°C	10	μA7810CKC	μA7810CKTE	μA7810Y
	12	μA7812CKC	μA7812CKTE	μA7812Y
	15	μA7815CKC	μA7815CKTE	μA7815Y
	18	μA7818CKC	μA7818CKTE	μA7818Y
	24	μA7824CKC	μA7824CKTE	μA7824Y

The KTE package is only available taped and reeled. Add the suffix R to the device type (e.g., μ A7805CKTER). Chip forms are tested at 25°C.

schematic

SLVS056E - MAY 1976 - REVISED JULY 1999

absolute maximum ratings over operating temperature ranges (unless otherwise noted)[†]

		μ Α78xx	UNIT
	μA7824C	40	v
Input voltage, VI	All others	35	v
Virtual junction temperature range, TJ		0 to 150	°C
Backage thermal importance () (acc Nates 1 and 2)	KC package	22	°C
Package thermal impedance, θ_{JA} (see Notes 1 and 2)	KTE package	23	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds		260	°C
Storage temperature range, T _{stg}		-65 to 150	°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Maximum power dissipation is a function of T_J(max), θ_JA, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is P_D = (T_J(max) – T_A)/θ_JA. Operating at the absolute maximum T_J of 150°C can impact reliability. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

recommended operating conditions

		MIN	MAX	UNIT
	μA7805C	7	MAX 25 25 25 25 28 30 30 30 33	
	μA7806C	8	25	
	μA7808C	10.5	25	
	μA7885C	10.5	25	
Input voltage, VI	μA7810C	12.5	28	V
	μA7812C	14.5	30	
	μA7815C	17.5	30	
	μA7818C	21	33	
	μA7824C	27	38	
Output current, I _O		10.5 25 12.5 28 14.5 30 17.5 30 21 33 27 38 1.5 1.5		А
Operating virtual junction temperature, TJ	μA7800C series	0	125	°C

SLVS056E - MAY 1976 - REVISED JULY 1999

electrical characteristics at specified virtual junction temperature, $V_I = 10 V$, $I_O = 500 mA$ (unless otherwise noted)

DADAMETED	TEST CO		- +	μ Α7805C			UNIT
PARAMETER	IESI CO	ONDITIONS	т _J †	MIN	TYP	MAX	
Output veltage	$I_{O} = 5 \text{ mA to 1 A},$	$V_{I} = 7 V \text{ to } 20 V,$	25°C	4.8	5	5.2	V
Output voltage	P _D ≤ 15 W	·	0°C to 125°C	4.75		5.25	v
	VI = 7 V to 25 V		25%		3	100	mV
Input voltage regulation	V _I = 8 V to 12 V		25°C		1 50 62 78	mv	
Ripple rejection	V _I = 8 V to 18 V,	f = 120 Hz	0°C to 125°C	62	78		dB
Output voltage regulation	I _O = 5 mA to 1.5 A		0500		15	100	mV
Output voltage regulation	I _O = 250 mA to 750 i	1A 25°C	5	50	IIIV		
Output resistance	f = 1 kHz		0°C to 125°C		0.017		Ω
Temperature coefficient of output voltage	IO = 5 mA		0°C to 125°C		-1.1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		25°C		40		μV
Dropout voltage	I _O = 1 A		25°C		2		V
Bias current			25°C		4.2	8	mA
Dies summent short so	V _I = 7 V to 25 V					1.3	
Bias current change	$I_{O} = 5 \text{ mA to 1 A}$		0°C to 125°C			0.5	mA
Short-circuit output current			25°C		750		mA
Peak output current			25°C		2.2		А

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

electrical characteristics at specified virtual junction temperature, V_I = 11 V, I_O = 500 mA (unless otherwise noted)

PARAMETER	TEST CO	NDITIONS	- +	μ	A7806C		UNIT
FARAMETER	TEST CO	NDITION3	тj†	MIN	TYP	MAX	UNIT
Output voltage	$I_{O} = 5 \text{ mA to } 1 \text{ A},$	V _I = 8 V to 21 V,	25°C	5.75	6	6.25	V
Output voltage	P _D ≤ 15 W	-	0°C to 125°C	5.7		6.3	v
Input voltage regulation	$V_{I} = 8 V \text{ to } 25 V$		25°C		5	120	mV
Input voltage regulation	VI = 9 V to 13 V		25°C		1.5	60	mv
Ripple rejection	VI = 9 V to 19 V,	f = 120 Hz	0°C to 125°C	59	75		dB
	IO = 5 mA to 1.5 A) = 5 mA to 1.5 A			14	120	mV
Output voltage regulation	I _O = 250 mA to 750 m	۱A	25°C		4	60	mv
Output resistance	f = 1 kHz		0°C to 125°C		0.019		Ω
Temperature coefficient of output voltage	IO = 5 mA		0°C to 125°C		-0.8		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		25°C		45		μV
Dropout voltage	I _O = 1 A		25°C		2		V
Bias current			25°C		4.3	8	mA
Bias current change	VI = 8 V to 25 V		0°C to 125°C			1.3	mA
bias current change	$I_{O} = 5 \text{ mA to 1 A}$		0 C 10 125 C			0.5	mA
Short-circuit output current			25°C		550		mA
Peak output current			25°C		2.2		А

SLVS056E - MAY 1976 - REVISED JULY 1999

electrical characteristics at specified virtual junction temperature, V_I = 14 V, I_O = 500 mA (unless otherwise noted)

DADAMETED		_ +	μ	A7808C		UNIT
PARAMETER	TEST CONDITIONS	TJ‡	MIN	TYP	MAX	UNIT
Output voltage	$I_{O} = 5 \text{ mA to 1 A}, \qquad V_{I} = 10.5 \text{ V to 23 V},$	25°C	7.7	8	8.3	V
	$P_{D} \le 15 W$	0°C to 125°C	7.6		8.4	v
Input voltage regulation	$V_{I} = 10.5 V$ to 25 V	25°C		6	160	mV
input voltage regulation	V _I = 11 V to 17 V	25 C		2	MAX 8.3 8.4	IIIV
Ripple rejection	$V_{I} = 11.5 V$ to 21.5 V, $f = 120 Hz$	0°C to 125°C	55	72		dB
Output voltage regulation	I _O = 5 mA to 1.5 A	25°C		12	160	mV
Oulput voltage regulation	I _O = 250 mA to 750 mA	25 C		4	80 160 80	IIIV
Output resistance	f = 1 kHz	0°C to 125°C		0.016		Ω
Temperature coefficient of output voltage	I _O = 5 mA	0°C to 125°C		-0.8		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		52		μV
Dropout voltage	I _O = 1 A	25°C		2		V
Bias current		25°C		4.3	8	mA
Bias current change	$V_{I} = 10.5 V$ to 25 V	0°C to 125°C			1	mA
bias current change	$I_{O} = 5 \text{ mA to 1 A}$	0 0 10 125 0			0.5	mA
Short-circuit output current		25°C		450		mA
Peak output current		25°C		2.2		А

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

electrical characteristics at specified virtual junction temperature, $V_I = 15 V$, $I_O = 500 mA$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS	_ +	μA	7885C		UNIT
FARAMETER	TEST CONDITIONS	TJ†	MIN	TYP	MAX	
Output voltage	$I_{O} = 5 \text{ mA to 1 A}, V_{I} = 11 \text{ V to } 23.5 \text{ V},$	25°C	8.15	8.5	8.85	V
	$P_{D} \le 15 W$	0°C to 125°C 8.1	0°C to 125°C 8.1		8.9	v
Input voltage regulation	$V_{I} = 10.5 V$ to 25 V	25°C		6	170	mV
Input voltage regulation	V _I = 11 V to 17 V	25 C		2 85 70 12 170 4 85 0.016	IIIV	
Ripple rejection	V _I = 11.5 V to 21.5 V, f = 120 Hz	0°C to 125°C	54	70		dB
Output voltage regulation	I _O = 5 mA to 1.5 A	25°C		12	170	mV
Output voltage regulation	I _O = 250 mA to 750 mA	25°C		4	4 85	mv
Output resistance	f = 1 kHz	0°C to 125°C		0.016		Ω
Temperature coefficient of output voltage	IO = 5 mA	0°C to 125°C		-0.8		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		55		μV
Dropout voltage	I _O = 1 A	25°C		2		V
Bias current		25°C		4.3	8	mA
Ripp current change	$V_I = 10.5 V$ to 25 V	0°C to 125°C			1	mA
Bias current change	$I_{O} = 5 \text{ mA to 1 A}$	0 C 10 125 C			0.5	mA
Short-circuit output current		25°C		450		mA
Peak output current		25°C		2.2		А

SLVS056E - MAY 1976 - REVISED JULY 1999

electrical characteristics at specified virtual junction temperature, $V_I = 17 V$, $I_O = 500 mA$ (unless otherwise noted)

DADAMETED	TEST CO	NDITIONS	- +	μ	UNIT		
PARAMETER	IESI CO	NDITIONS	т _J †	MIN	TYP	MAX	UNIT
Output veltage	$I_{O} = 5 \text{ mA to 1 A},$	V _I = 12.5 V to 25 V,	25°C	9.6	10	10.4	V
Output voltage	P _D ≤ 15 W	·	0°C to 125°C	9.5	10	10.5	v
	VI = 12.5 V to 28 V		0500		7	200	mV
Input voltage regulation	VI = 14 V to 20 V		25°C		2 100 55 71	mv	
Ripple rejection	VI = 13 V to 23 V,	f = 120 Hz	0°C to 125°C	55	71		dB
	IO = 5 mA to 1.5 A		0500		12	200	
Output voltage regulation	I _O = 250 mA to 750 mA		25°C		4	100	mV
Output resistance	f = 1 kHz		0°C to 125°C		0.018		W
Temperature coefficient of output voltage	IO = 5 mA		0°C to 125°C		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		25°C		70		μV
Dropout voltage	I _O = 1 A		25°C		2		V
Bias current			25°C		4.3	8	mA
Dies summent short so	V _I = 12.5 V to 28 V		000 45 40500			1	
ias current change	$I_{O} = 5 \text{ mA to 1 A}$		0°C to 125°C	0.5			mA
Short-circuit output current			25°C		400		mA
Peak output current			25°C		2.2		А

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

electrical characteristics at specified virtual junction temperature, V_I = 19 V, I_O = 500 mA (unless otherwise noted)

PARAMETER	TEST COM	UDITIONS	_ +	μ	A7812C		UNIT
PARAMETER	TEST COM		т _J †	MIN	TYP	MAX	UNIT
Output voltage	$I_{O} = 5 \text{ mA to 1 A},$	V _I = 14.5 V to 27 V,	25°C	11.5	12	12.5	V
	P _D ≤ 15 W		0°C to 125°C	11.4		12.6	v
Input voltage regulation	VI = 14.5 V to 30 V		25°C		10	240	mV
Input voltage regulation	VI = 16 V to 22 V		25-0		3	120	mv
Ripple rejection	VI = 15 V to 25 V,	f = 120 Hz	0°C to 125°C	55	71		dB
	IO = 5 mA to 1.5 A		25°C	12	240	0 mV	
Output voltage regulation	I _O = 250 mA to 750 m.	A	25-0		4	120	mv
Output resistance	f = 1 kHz		0°C to 125°C		0.018		W
Temperature coefficient of output voltage	IO = 5 mA		0°C to 125°C		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		25°C		75		μV
Dropout voltage	I _O = 1 A		25°C		2		V
Bias current			25°C		4.3	8	mA
Rice current change	VI = 14.5 V to 30 V					1	A
Bias current change	$I_{O} = 5 \text{ mA to 1 A}$		0°C to 125°C			0.5	mA
Short-circuit output current			25°C		350		mA
Peak output current			25°C		2.2		А

SLVS056E - MAY 1976 - REVISED JULY 1999

electrical characteristics at specified virtual junction temperature, $V_I = 23 V$, $I_O = 500 mA$ (unless otherwise noted)

DADAMETED	TEST CONDITIONS	_ +	μ	A7815C	;	UNIT
PARAMETER	TEST CONDITIONS	TJ‡	MIN	TYP	MAX	UNIT
Output voltage	$I_{O} = 5 \text{ mA to 1 A}, \qquad V_{I} = 17.5 \text{ V to 30 V},$	25°C	14.4	15	15.6	V
	$P_{D} \le 15 W$	0°C to 125°C	14.25		MAX 15.6 15.75 300 150 300 150 	v
Input voltage regulation	V _I = 17.5 V to 30 V	25°C		11	300	mV
Input voltage regulation	V _I = 20 V to 26 V	25 C		3	MAX 15.6 15.75 300 150 300 150	IIIV
Ripple rejection	V _I = 18.5 V to 28.5 V, f = 120 Hz	0°C to 125°C	54	70		dB
	I _O = 5 mA to 1.5 A	25°C		12	300	mV
Output voltage regulation	I _O = 250 mA to 750 mA	25-0		4	150	mv
Output resistance	f = 1 kHz	0°C to 125°C		0.019		W
Temperature coefficient of output voltage	I _O = 5 mA	0°C to 125°C		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz	25°C		90		μV
Dropout voltage	I _O = 1 A	25°C		2		V
Bias current		25°C		4.4	8	mA
Bias current change	V _I = 17.5 V to 30 V	0°C to 125°C			1	mA
Blas current change	$I_{O} = 5 \text{ mA to } 1 \text{ A}$	0 0 10 125 0			0.5	mA
Short-circuit output current		25°C		230		mA
Peak output current		25°C		2.1		А

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

electrical characteristics at specified virtual junction temperature, $V_I = 27 V$, $I_O = 500 mA$ (unless otherwise noted)

PARAMETER	TEST CO	NDITIONS	_ +	μ	A7818C		UNIT
PARAMETER	1231 CC	INDITIONS	TJ‡	MIN	TYP	MAX	UNIT
Output voltage	$I_{O} = 5 \text{ mA to 1 A},$	V _I = 21 V to 33 V,	25°C	17.3	18	18.7	V
Output voltage	P _D ≤ 15 W	-	0°C to 125°C	17.1		18.9	v
lanut voltage regulation	V _I = 21 V to 33 V		25°C		15	360	mV
Input voltage regulation	VI = 24 V to 30 V		25°C		5	180	mv
Ripple rejection	VI = 22 V to 32 V,	f = 120 Hz	0°C to 125°C	53	69		dB
	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$		25°C		12	360	
Output voltage regulation	I _O = 250 mA to 750 r	nA	25°C		4	4 180	mV
Output resistance	f = 1 kHz		0°C to 125°C		0.022		W
Temperature coefficient of output voltage	IO = 5 mA		0°C to 125°C		-1		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		25°C		110		μV
Dropout voltage	I _O = 1 A		25°C		2		V
Bias current			25°C		4.5	8	mA
Riss surrent shange	V _I = 21 V to 33 V		0°C to 125°C			1	mA
Bias current change	$I_{O} = 5 \text{ mA to 1 A}$		- 0°C to 125°C			0.5	mA
Short-circuit output current			25°C		200		mA
Peak output current			25°C		2.1		А

SLVS056E - MAY 1976 - REVISED JULY 1999

electrical characteristics at specified virtual junction temperature, $V_I = 33 V$, $I_O = 500 mA$ (unless otherwise noted)

DADAMETED	TECT OC		- +	μ	UNIT		
PARAMETER	TEST CO	ONDITIONS	TJ‡	MIN	TYP	MAX	
Output veltage	$I_{O} = 5 \text{ mA to 1 A},$	V _I = 27 V to 38 V,	25°C	23	24	25	v
Output voltage	P _D ≤ 15 W		0°C to 125°C	22.8		25.2	
	VI = 27 V to 38 V		25°C		18	480	mV
Input voltage regulation	V _I = 30 V to 36 V		25°C	6 240 50 66	mv		
Ripple rejection	V _I = 28 V to 38 V,	f = 120 Hz	0°C to 125°C	50	66		dB
	IO = 5 mA to 1.5 A	mA to 1.5 A	0500		12	480	mV
Output voltage regulation	I _O = 250 mA to 750 mA		25°C		4	240	IIIV
Output resistance	f = 1 kHz		0°C to 125°C		0.028		W
Temperature coefficient of output voltage	IO = 5 mA		0°C to 125°C		-1.5		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		25°C		170		μV
Dropout voltage	I _O = 1 A		25°C		2		V
Bias current			25°C		4.6	8	mA
Dies summent shares	V _I = 27 V to 38 V		000 to 40500			1	
Bias current change	$I_{O} = 5 \text{ mA to } 1 \text{ A}$		- 0°C to 125°C	0.5			mA
Short-circuit output current			25°C		150		mA
Peak output current			25°C		2.1		A

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

electrical characteristics at specified virtual junction temperature, V_I = 10 V, I_O = 500 mA, T_J = 25°C (unless otherwise noted)[†]

PARAMETER	TEST CONDITIONS	μ Α7805Υ	UNIT	
	TEST CONDITIONS	MIN TYP MAX	UNIT	
Output voltage		5	V	
Input voltage regulation	$V_{I} = 7 V \text{ to } 25 V$	3	mV	
input voltage regulation	$V_{I} = 8 V$ to 12 V	1	IIIV	
Ripple rejection	V _I = 8 V to 18 V, f = 120 Hz	78	dB	
Output voltage regulation	I _O = 5 mA to 1.5 A	15	mV	
	I _O = 250 mA to 750 mA	5	IIIV	
Output resistance	f = 1 kHz	0.017	W	
Temperature coefficient of output voltage	I _O = 5 mA	-1.1	mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz	40	μV	
Dropout voltage	I _O = 1 A	2	V	
Bias current		4.2	mA	
Short-circuit output current		750	mA	
Peak output current		2.2	A	

$\mu \text{A7800 SERIES} \\ \text{POSITIVE-VOLTAGE REGULATORS} \\$

SLVS056E - MAY 1976 - REVISED JULY 1999

electrical characteristics at specified virtual junction temperature, V_I = 11 V, I_O = 500 mA, T_J = 25° C (unless otherwise noted)[†]

PARAMETER	TEST CONDITIONS	μ Α7806Υ		
	TEST CONDITIONS	MIN TYP MAX	UNIT	
Output voltage		6	V	
Input voltage regulation	$V_{I} = 8 V \text{ to } 25 V$	5		
Input voltage regulation	$V_I = 9 V$ to 13 V	1.5	mV	
Ripple rejection	V _I = 9 V to 19 V, f = 120 Hz	75	dB	
Output voltage regulation	I _O = 5 mA to 1.5 A	14	mV	
	I _O = 250 mA to 750 mA	4		
Output resistance	f = 1 kHz	0.019	W	
Temperature coefficient of output voltage	I _O = 5 mA	-0.8	mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz	45	μV	
Dropout voltage	I _O = 1 A	2	V	
Bias current		4.3	mA	
Short-circuit output current		550	mA	
Peak output current		2.2	A	

⁺ Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

electrical characteristics at specified virtual junction temperature, V_I = 14 V, I_O = 500 mA, T_J = 25°C (unless otherwise noted)[†]

PARAMETER		μ Α7808Υ	LINUT	
	TEST CONDITIONS	MIN TYP MAX	UNIT	
Output voltage		8	V	
	V _I = 10.5 V to 25 V	6		
Input voltage regulation	V _I = 11 V to 17 V	2	mV	
Ripple rejection	$V_{I} = 11.5 V$ to 21.5 V, $f = 120 Hz$	72	dB	
Output voltage regulation	I _O = 5 mA to 1.5 A	12	mV	
	I _O = 250 mA to 750 mA	4		
Output resistance	f = 1 kHz	0.016	W	
Temperature coefficient of output voltage	I _O = 5 mA	-0.8	mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz	52	μV	
Dropout voltage	I _O = 1 A	2	V	
Bias current		4.3	mA	
Short-circuit output current		450	mA	
Peak output current		2.2	A	

SLVS056E - MAY 1976 - REVISED JULY 1999

electrical characteristics at specified virtual junction temperature, $V_I = 15 V$, $I_O = 500 mA$, $T_J = 25^{\circ}C$ (unless otherwise noted)[†]

PARAMETER	TEST CONDITIONS	μ Α7885Υ	1.18.11
	TEST CONDITIONS	MIN TYP	MAX
Output voltage		8.5	V
Input voltage regulation	V _I = 10.5 V to 25 V	6	mV
Input voltage regulation	V _I = 11 V to 17 V	2	IIIV
Ripple rejection	V _I = 11.5 V to 21.5 V, f = 120 Hz	70	dB
Output voltage regulation	IO = 5 mA to 1.5 A	12	mV
	I _O = 250 mA to 750 mA	4	mv
Output resistance	f = 1 kHz	0.016	W
Temperature coefficient of output voltage	IO = 5 mA	-0.8	mV/°
Output noise voltage	f = 10 Hz to 100 kHz	55	μV
Dropout voltage	I _O = 1 A	2	V
Bias current		4.3	mA
Short-circuit output current		450	mA
Peak output current		2.2	A

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

electrical characteristics at specified virtual junction temperature, V_I = 17 V, I_O = 500 mA, T_J = 25°C (unless otherwise noted)[†]

PARAMETER		μ Α7810Υ	UNIT	
	TEST CONDITIONS	MIN TYP MAX		
Output voltage		10	V	
Input voltage regulation	V _I = 12.5 V to 28 V	7		
Input voltage regulation	V _I = 14 V to 20 V	2	mV	
Ripple rejection	V _I = 13 V to 23 V, f = 120 Hz	71	dB	
Output voltage regulation	I _O = 5 mA to 1.5 A	12	mV	
	I _O = 250 mA to 750 mA	4		
Output resistance	f = 1 kHz	0.018	W	
Temperature coefficient of output voltage	I _O = 5 mA	-1	mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz	70	μV	
Dropout voltage	I _O = 1 A	2	V	
Bias current		4.3	mA	
Short-circuit output current		400	mA	
Peak output current		2.2	A	

$\mu \text{A7800 SERIES} \\ \text{POSITIVE-VOLTAGE REGULATORS} \\$

SLVS056E - MAY 1976 - REVISED JULY 1999

electrical characteristics at specified virtual junction temperature, V_I = 19 V, I_O = 500 mA, T_J = 25° C (unless otherwise noted)[†]

PARAMETER	TEST CONDITIONS	μ Α7812Υ	LINUT	
	TEST CONDITIONS	MIN TYP MAX	UNIT	
Output voltage		12	V	
Input voltage regulation	VI = 14.5 V to 30 V	10		
Input voltage regulation	V _I = 16 V to 22 V	3	mV	
Ripple rejection	$V_{I} = 15 V \text{ to } 25 V$, $f = 120 \text{ Hz}$	71	dB	
Output voltage regulation	I _O = 5 mA to 1.5 A	12	mV	
	I _O = 250 mA to 750 mA	4		
Output resistance	f = 1 kHz	0.018	W	
Temperature coefficient of output voltage	I _O = 5 mA	-1	mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz	75	μV	
Dropout voltage	I _O = 1 A	2	V	
Bias current		4.3	mA	
Short-circuit output current		350	mA	
Peak output current		2.2	А	

⁺ Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

electrical characteristics at specified virtual junction temperature, V_I = 23 V, I_O = 500 mA, T_J = 25°C (unless otherwise noted)[†]

PARAMETER	TEST CONDITIONS	μ Α7	μ Α7815Υ	
		MIN 1	ΓΥΡ ΜΑΧ	
Output voltage			15	V
	V _I = 17.5 V to 30 V		11	
Input voltage regulation	$V_{I} = 20 V \text{ to } 26 V$		3	− mV
Ripple rejection	$V_{I} = 18.5 V$ to 28.5 V, $f = 120 Hz$		70	dB
Output voltage regulation	I _O = 5 mA to 1.5 A		12	mV
	I _O = 250 mA to 750 mA		4	
Output resistance	f = 1 kHz	0.	0.019	
Temperature coefficient of output voltage	I _O = 5 mA		-1	mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		90	μV
Dropout voltage	I _O = 1 A		2	V
Bias current			4.4	mA
Short-circuit output current			230	mA
Peak output current			2.1	A

SLVS056E - MAY 1976 - REVISED JULY 1999

electrical characteristics at specified virtual junction temperature, $V_I = 27 V$, $I_O = 500 mA$, $T_J = 25^{\circ}C$ (unless otherwise noted)[†]

PARAMETER		μ Α7818Υ		
	TEST CONDITIONS	MIN TYP MAX	UNIT	
Output voltage		18	V	
Input voltage regulation	V _I = 21 V to 33 V	15		
Input voltage regulation	V _I = 24 V to 30 V	5	mV	
Ripple rejection	V _I = 22 V to 32 V, f = 120 Hz	69	dB	
Output voltage regulation	I _O = 5 mA to 1.5 A	12	mV	
	I _O = 250 mA to 750 mA	4		
Output resistance	f = 1 kHz	0.022	W	
Temperature coefficient of output voltage	I _O = 5 mA	-1	mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz	110	μV	
Dropout voltage	I _O = 1 A	2	V	
Bias current		4.5	mA	
Short-circuit output current		200	mA	
Peak output current		2.1	A	

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output.

electrical characteristics at specified virtual junction temperature, V_I = 33 V, I_O = 500 mA, T_J = 25°C (unless otherwise noted)[†]

PARAMETER	TEST CONDITIONS	μ Α7824Υ	UNIT	
	TEST CONDITIONS	MIN TYP MAX		
Output voltage		24	V	
Input voltogo regulation	V _I = 27 V to 38 V	18		
Input voltage regulation	$V_{I} = 30 V$ to 36 V	6	mV	
Ripple rejection	V _I = 28 V to 38 V, f = 120 Hz	66	dB	
	I _O = 5 mA to 1.5 A	12	mV	
Output voltage regulation	I _O = 250 mA to 750 mA	4		
Output resistance	f = 1 kHz	0.028	W	
Temperature coefficient of output voltage	I _O = 5 mA	-1.5	mV/°C	
Output noise voltage	f = 10 Hz to 100 kHz	170	μV	
Dropout voltage	I _O = 1 A	2	V	
Bias current		4.6	mA	
Short-circuit output current		150	mA	
Peak output current		2.1	А	

SLVS056E - MAY 1976 - REVISED JULY 1999

APPLICATION INFORMATION

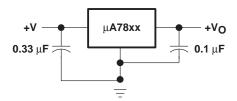


Figure 1. Fixed-Output Regulator

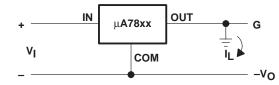


Figure 2. Positive Regulator in Negative Configuration (VI Must Float)

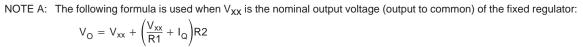


Figure 3. Adjustable-Output Regulator

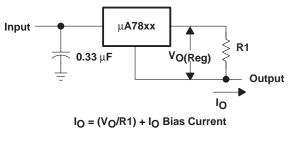
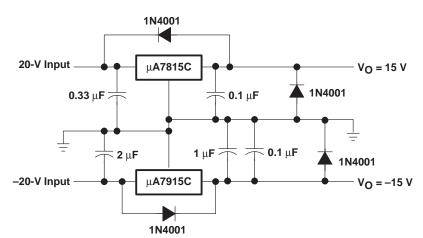



Figure 4. Current Regulator

SLVS056E – MAY 1976 – REVISED JULY 1999

APPLICATION INFORMATION

operation with a load common to a voltage of opposite polarity

In many cases, a regulator powers a load that is not connected to ground but, instead, is connected to a voltage source of opposite polarity (e.g., operational amplifiers, level-shifting circuits, etc.). In these cases, a clamp diode should be connected to the regulator output as shown in Figure 6. This protects the regulator from output polarity reversals during startup and short-circuit operation.

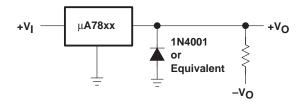
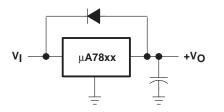
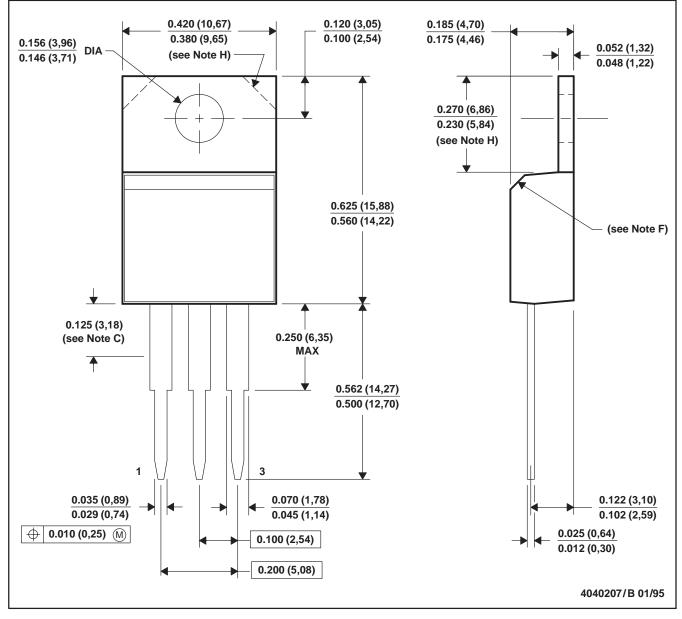


Figure 6. Output Polarity-Reversal-Protection Circuit

reverse-bias protection

Occasionally, the input voltage to the regulator can collapse faster than the output voltage. This can occur, for example, when the input supply is crowbarred during an output overvoltage condition. If the output voltage is greater than approximately 7 V, the emitter-base junction of the series-pass element (internal or external) could break down and be damaged. To prevent this, a diode shunt can be used as shown in Figure 7.




Figure 7. Reverse-Bias-Protection Circuit

MECHANICAL DATA

MSOT007A - JANUARY 1995 - REVISED SEPTEMBER 1995

PLASTIC FLANGE-MOUNT PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Lead dimensions are not controlled within this area.
- D. All lead dimensions apply before solder dip.
- E. The center lead is in electrical contact with the mounting tab.
- F. The chamfer is optional.

KC (R-PSFM-T3)

- G. Falls within JEDEC TO-220AB
- H. Tab contour optional within these dimensions

