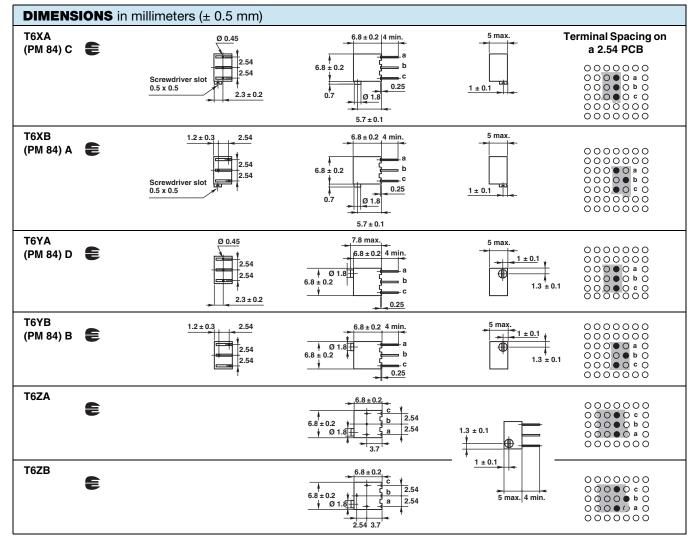
Vishay Sfernice

1/4" Multi-Turn Fully Sealed Container Cermet Trimmer



Due to their square shape and small size (6.8 mm x 6.8 mm x 5 mm), the multi-turn trimmers of the T6 series are ideally suited for PCB use, enabling high density board mounting with reduced space requirement between cards.

Six versions are available differing by the top or side position of the adjustment screw and by PC pins configuration. The use of cermet for the resistive track ensures an excellent stability of nominal specifications throughout life.

FEATURES

- Military and professional grade
- 0.25 W at 70 °C
- Product qualification according to CECC 41100-005 (A, B, C, D)
- For qualified range, refer to <u>www.vishay.com/doc?51002</u>
- Equivalent to MIL-R-22097 (RJ26)
- Low contact resistance variation 1 % typical
- Fully sealed
- Wide range of ohmic values from 10 Ω to 2.2 $M\Omega$
- Tests according to CECC 41000 or IEC 60393-1
- Compliant to RoHS Directive 2002/95/EC

E Undergoes European Quality Assurance System (CECC)

1/4" Multi-Turn Fully Sealed Container Cermet Trimmer

T6

Resistive element	Cermet			
Electrical travel	14 turns ± 2			
Resistance range	10 Ω to 2.2 MΩ			
Standard series E3	1 - 2.2 - 4.7 and on request 1 - 2 - 5			
Stan	ard 10 %			
Tolerance On req	est 5 %			
Li	ear 0.25 W at + 70 °C			
Power rating	0.25 NH H O O O O O O O O O O O O O			
Circuit diagram	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ } \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \begin{array}{c} \end{array} \\ \end{array} } \begin{array}{c} \end{array} \\ \end{array} } \end{array} \\			
Temperature coefficient	See Standard Resistance Element table			
Limiting element voltage (linear law)	250 V			
Contact resistance variation	2 % Rn or 2 Ω			
End resistance (typical)	1 Ω			
Dielectric strength (RMS)	1000 V			
Insulation resistance (500 V _{DC})	10 ⁶ ΜΩ			

MECHANICAL SPECIFICATIONS				
Mechanical travel	15 turns ± 5			
Operating torque (max. Ncm)	1			
End stop torque	Clutch action			
Net weight (max. g)	0.5			
Wiper (actual travel)	Positioned at approx. 50 %			
Terminals	Pure Sn (code e3)			

ENVIRONMENTAL SPECIFICATIONS				
Temperature range - 55 °C to + 155 °C				
Climatic category	55/125/56			
Sealing	Fully sealed - IP67			

Vishay Sfernice

1/4" Multi-Turn Fully Sealed Container Cermet Trimmer

PERFORMANCES						
CECC 41100		REQUIREMENTS		TYPICAL VALUES AND DRIFTS		
TESTS	CONDITIONS	∆R _T /R _T (%)	∆R ₁₋₂ /R ₁₋₂ (%)	∆R _T /R _T (%)	∆R ₁₋₂ /R ₁₋₂ (%)	
Climatic sequence	Phase A dry heat 125 °C Phase B damp heat Phase C cold - 55 °C Phase D damp heat 5 cycles	±2%	±3%	± 0.5 %	±1%	
Long term damp heat	56 days 40 °C, 93 % RH	± 2 % Dielectric strength: 250 V Insulation resistance: > 100 MΩ	±3%	\pm 0.5 % Dielectric strength: 1000 V Insulation resistance: > 10 ⁴ MΩ	±1%	
Rotational life	200 cycles	± 2 % Contact res. variation: < 3 % Rn	-	± (2 % + 3 Ω) Contact res. variation: < 1 % Rn	-	
Load life	1000 h at rated power 90'/30' - ambient temp. 70 °C	± 2 % Contact res. variation: < 3 % Rn	±4%	± 1 % Contact res. variation: < 1 % Rn	±2%	
Rapid temp. change	5 cycles - 55 °C to + 125 °C	± 1.5 %	ΔV ₁₋₂ /ΔV ₁₋₃ ± 1 %	± 0.5 %	ΔV ₁₋₂ /ΔV ₁₋₃ < ± 1 %	
Shock	50 g at 11 ms 3 successive shocks in 3 directions	±1%	±2%	± 0.1 %	± 0.2 %	
Vibration	10 Hz to 55 Hz 0.75 mm or 10 g during 6 h	±1%	ΔV ₁₋₂ /ΔV ₁₋₃ ± 2 %	± 0.1 %	$\Delta V_{1-2} / \Delta V_{1-3} < \pm 0.2 \%$	

STANDARD RESISTANCE ELEMENT DATA					
STANDARD		TYPICAL			
RESISTANCE VALUES	MAX. POWER AT 70 °C	MAX. WORKING VOLTAGE	MAX. WIPER CUR.	TCR - 55 °C + 125 °C	
Ω	W	V	mA	ppm/°C	
10	0.25	1.58	158		
22	0.25	2.34	107		
47	0.25	3.53	73		
100	0.25	5	50		
220	0.25	7.42	34		
470	0.25	10.8	23		
1K	0.25	15.8	15.8		
2.2K	0.25	23.4	10.7		
4.7K	0.25	34.3	7.3	± 100	
10K	0.25	50	5		
22K	0.25	74.2	3.37		
47K	0.25	108.4	2.31		
100K	0.25	158	1.58		
220K	0.25	235	1.07		
470K	0.13	250	0.53		
1M	0.063	250	0.25		
2.2M	0.028	250	0.11		

MARKING

- Vishay trademark
- Model
- Style
- Ohmic value (in Ω , k Ω , M Ω)
- Tolerance (in %)
- Manufacturing date
- Marking of terminal C

PACKAGING

• In tube of 50 pieces code T20 (TU50)

For technical questions, contact: <u>sfer@vishay.com</u> See also Application Note: <u>www.vishay.com/doc?51001</u> and <u>www.vishay.com/doc?52029</u>

1/4" Multi-Turn Fully Sealed Container Cermet Trimmer

Vishay Sfernice

ORDERING INFORMATION (Part Number)						
T 6 X A 4 7 4 K T 2 0						
Model T6	STYLE XA XB YA YB ZA ZB	CHMIC VALUE From 10 Ω to 2.2 MΩ 474 = 470 kΩ	TOLERANCE $\mathbf{K} = 10 \%$ On request: $\mathbf{J} = 5 \%$	PACKAGING T20 = Tube 50 pieces	SPECIAL NUMBER (If applicable) Given by Vishay for custom design	

DESCRIPTION (for information only)						
T6	XA	470K	10 %		TU	e3
MODEL	STYLE	VALUE	TOLERANCE	SPECIAL	PACKAGING	LEAD FINISH

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.