N-Channel JFET Monolithic Dual

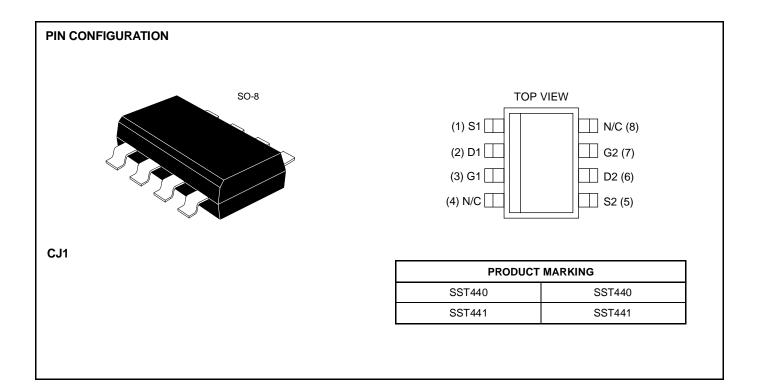
CORPORATION

SST440 / SST441

FEATURES

- High Gain \dots gf_s > 6 mS typical Low Leakage \dots I_G < 1pA typical
- Low Noise
- Surface Mount Package

APPLICATIONS


- Differential Wideband Amplifiers
- VHF/UHF Amplifiers
- Test and Measurement

DESCRIPTION

Calogic's SST440 Series is a high speed N-Channel Monolithic Dual JFET in a surface mount SO-8 package. This device is well suited for use as wideband differential amplifiers in test and measurement applications. The combination of high gain, low leakage and low noise make it an excellent performer.

ORDERING INFORMATION

Part	Package	Temperature Range				
SST440-1	Plastic SO-8	-55°C to +150°C				
NOTE: For Sorted Chips in Carriers, See U440 Series						

SST440 / SST441

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

calogíc

CORPORATION

Parameter/Test Condition		Symbol	Limit	Unit	
Gate-Drain Voltage		V _{GD}	-25	V	
Gate-Source Voltag		VGS	-25	V	
Forward Gate Curr		lG	50	mA	
Power Dissipation	(per side)	PD	300	mW	
•	(total)		500	mW	
Power Derating	(per side)		2.4	mW/ ⁰C	
0	(total)		4	mW/ °C	
Operating Junction Temperature		TJ	-55 to 150	°C	
Storage Temperature		T _{stg}	-55 to 150	°C	
Lead Temperature (1/16" from case for 10 seconds)		TL	300	°C	

ELECTRICAL CHARACTERISTICS (T_A = 25^oC unless otherwise noted)

SYMBOL	CHARACTERISTCS	TYP ¹	SST440		SST441				
			MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
STATIC									
V _{(BR)GSS}	Gate-Source Breakdown Voltage	-35	-25		-25		V	$I_G = -1\mu A$, $V_{DS} = 0V$	
V _{GS(OFF})	Gate-Source Cut off Voltage	-3.5	-1	-6	-1	-6		$V_{DS} = 10V$, $I_D = 1nA$	
IDSS	Saturation Drain Current ²	15	6	30	6	30	mA	V_{DS} = 10V, V_{GS} = 0V	
IGSS	Gate Reverse Current	-1		-500		-500	pА	$V_{GS} = -15V, V_{DS} = 0V$	
		-0.2					nA	$T_A = 125^{\circ}C$	
l _G	Gate Operating Current	-1		-500		-500	pА	$V_{DG} = 10V$, $I_D = 5mA$	
		-0.2					nA	T _A = 125°C	
V _{GS(F)}	Gate-Source Forward Voltage	0.7					V	$I_G = 1 \text{mA}, V_{DS} = 0 \text{V}$	
DYNAMIC									
g fs	Common-Source Forward Transconductance	6	4.5	9	4.5	9	mS	V _{DG} = 10V, I _D = 5mA	
g _{os}	Common-Source Output Conductance	20		200		200	μS	f = 1kHz	
g fs	Common-Source Forward Transconductance	5.5					mS	V _{DG} = 10V, I _D = 5mA f = 100MHz	
gos	Common-Source Output Conductance	30					μS		
Ciss	Common-Source Input Capacitance	3.5					рF	$V_{DG} = 10V, I_D = 5mA$	
C _{rss}	Common-Source Reverse Transfer Capacitance	1					рг	f = 1MHz	
en	Equivalent Input Noise Voltage	4					nV/√Hz	V _{DG} = 10V, I _D = 5mA f = 10kHz	
MATCHING							-		
V _{GS1} -V _{GS2}	Differential Gate-Source Voltage	7		10		20	mV	$V_{DG} = 10V, I_D = 5mA$	
$\Delta \mid V_{GS1}$ -VGS2	Gate-Source Voltage Differential Change with	10					μV/ ^ο C	$T = -55 \text{ to } 25^{\circ}\text{C}$ $V_{DG} = 10 \text{V}$	
ΔT	Temperature	10						$T = 25 \text{ to } 125^{\circ}\text{C}$ $I_{D} = 5\text{mA}$	
IDSS1 IDSS2	Saturation Drain Current Ratio	0.98						V_{DS} = 10V, V_{GS} = 0V	
Gfs1 Gfs2	Transconductance Ratio	0.98						V _{DG} = 10V, I _D = 5mA f= 1 kHz	
CMRR	Common Mode Rejection Ratio	90		l			dB	V _{DD} = 5 to 10V, I _D = 5mA	

NOTES: 1. For design aid only, not subject to production testing. 2. Pulse test; PW = 300μ s, duty cycle $\leq 3\%$.