

ProASIC to SX-A PQ208 Prototyping Adapter Board

User Document for P/N SI-SXA-APAPQ208-KIT

Introduction

The SI-SXA-APAPQ208 adapter board is a prototyping tool that maps the footprint of an Actel ProASIC device in a PQFP208 package on the top to the footprint of an Actel SX-A device on the bottom. Using this adapter board, designs targeted for production in an SX-A FPGA can be prototyped using the reprogrammable ProASIC family.

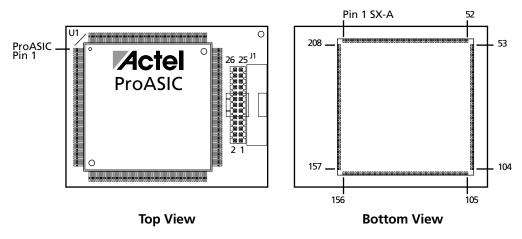


Figure 1: SI-SXA-APAPQ208 Top and Bottom View Drawings

The SI-SXA-APAPQ208 adapter board is manufactured by Ironwood. The complete SI-SXA-APAPQ208-KIT adapter board solution is a two-piece product consisting of a top "adapter board" and a bottom "foot". The foot portion maps directly to the PQ208 footprint of an SX-A device and should be soldered directly to a system PCB. The top adapter board portion attaches to the foot through a PGA-like interconnecting grid. A ProASIC A500K130-PQ208I device is attached onto the top adapter board piece. A small ISP header is provided with the adapter, and the FlashPro programmer can be connected directly to the top adapter board for programming the ProASIC device. The pins of the ProASIC device are mapped down to the corresponding SX-A pin connections on the system board.

The SI-SXA-APAPQ208-KIT consists of:

Actel Part Number	Ironwood Part Number	Component
SI-SXA-APAPQ208-A	C4654	top adapter board
SI-SXA-APAPQ208-B	C4741	bottom foot
SMPA-ISP-HEADER-S	n/a	Small ISP header

This two-piece prototyping adapter board solution allows the top adapter board to be mobile and re-used as required during the prototyping stage of design development. The top adapter board can be used to prototype any SX-A design in the PQ208 package, as it can be easily attached and detached from multiple "feet" placed on a system board, and can be re-programmed as needed to verify multiple designs.

ProASIC to SX-A Pin Mapping Connections

Following are pin mapping connections for the SI-SXA-APAPQ208 adapter board.

Table 1 on page 4 lists the I/O pin mapping between the ProASIC device on top and the SX-A device on the bottom. When prototyping in ProASIC, the I/O connections for the target SX-A device should be mapped to the ProASIC PQ208 according to Table 1. By default, the adapter board comes with a ProASIC

A500K130-PQ208I device and is qualified to run at industrial temperature range. The bottom SX-A footprint can be targeted to any SX-A family member (e.g. SX08A, SX16A, SX32A, or SX72A). As some subtle differences in the pin assignments exist for the different SX-A family members, please refer to the table below to ensure the pin mapping is properly managed.

Table 2 on page 7 lists the pin-out for the programming header included with the top adapter board.

Table 3 on page 7 through Table 7 on page 8 list the connections for all power and ground connections between the SX-A and ProASIC device. This is shown for information only, and users do not have to make any modifications in the V_{CC}/GND connections on their board. As long as the system board provides normal power and ground connections to the pins of the bottom SX-A footprint, the signals are automatically mapped to the correct ProASIC pins through the adapter board.

Important I/O Considerations for Mapping Designs from SX-A to ProASIC Key to Signal Mapping Notes in Table 1

 (NC:
 No Connect Pin)
 →:
 A54SX32A NC
 V:
 A54SX72A V_{CC}

 +:
 A54SX08A NC
 Q:
 A54SX72A QCLK
 A:
 SX-A Probe A

 x:
 A54SX16A NC
 G:
 A54SX72A GND
 B:
 SX-A Probe B

The following I/Os are not mapped in the adapter: SX-A Pins 67, 106, 155, 156, 167, 170, and 173.

Note: These I/Os can still be used in the transition from the adapter to SX-A device. These seven pins are NC for the A54SX08A, but are available as user I/Os for other SX-A devices.

SX-A Pins 25 and 132 are NC for all SX-A devices except A54SX72A. Pin 132 is NOT mapped in the adapter board, but Pin 25 is available for use with the adapter board.

SX-A Pin 189 is NC for A54SX08A and I/O for all other SX-A devices. Pin 189 is mapped in the adapter board and is available for use with the adapter board.

SX-A Pins 80 and 182 are NC for all SX-A devices.

Pin Mapping for A500K (Top) to SX-A (Bottom)

Table 1: Pin Mapping

Signal A500K SX-A I/O_2 2 53 I/O_3 3 54 I/O_4 4 55 I/O_5 5 56 I/O_6 6 57 I/O_7 7 58 I/O_8 8 59 I/O_9 9 61⁺ I/O_10 10 62 I/O_11 11 63 I/O_12 12 64⁺ I/O_13 13 65 I/O_14 14 66 I/O_15 15 68 I/O_18 18 69 70⁺ I/O_19 19 I/O_20 20 71 I/O_21 21 72 23 73⁺ I/O_23 74^Q I/O_24 24 84^Q GL_0 25 GL_1 26 82 I/O_27 27 76^B I/O_28 28 81 30 75⁺ I/O_30 I/O_31 83^V 31 85⁺ I/O_32 32 I/O_33 33 86 I/O_34 34 87 88+ I/O_35 35 I/O_37 37 89 I/O_38 38 90 91+ I/O_39 39 1/0_42 42 92 I/O_43 43 93 94+ I/O_44 44

Table 1: Pin Mapping (Continued)

	,	
Signal	A500K	SX-A
I/O_45	45	95
I/O_46	46	96
I/O_47	47	97+
I/O_48	48	99
I/O_49	49	100
I/O_50	50	101
I/O_51	51	102
I/O_54	54	104
I/O_55	55	107
I/O_56	56	108 ⁺
I/O_57	57	109
I/O_58	58	110
I/O_59	59	111
I/O_60	60	112
I/O_61	61	113
I/O_62	62	116 ^{+G}
I/O_63	63	117 ^V
I/O_64	64	118
I/O_66	66	119 ⁺
I/O_67	67	120
I/O_68	68	121
I/O_69	69	122 ⁺
I/O_70	70	123
I/O_73	73	124
I/O_74	74	125 ⁺
I/O_75	75	126
I/O_76	76	127
I/O_77	77	128
I/O_78	78	133
I/O_79	79	134
I/O_80	80	135 ⁺
I/O_82	82	136
I/O_83	83	137
I/O_84	84	138 ⁺
I/O_85	85	139
I/O_86	86	140
L	I.	1

Table 1: Pin Mapping (Continued)

Signal A500K SX-A 141+ I/O_87 I/O_90 90 142 I/O_91 91 143⁺ I/O_92 92 144 I/O_93 93 147 I/O_94 94 149 I/O_95 150 95 I/O_96 96 151 I/O_98 152 98 I/O_99 99 153 I/O_100 100 154 TRST, I/O_109 109 30 I/O_111 158 111 I/O_112 112 159 I/O_113 113 161 I/O_114 114 162 163 I/O_115 115 I/O_116 116 165 I/O_117 117 166 I/O_118 118 168 I/O_119 119 169 I/O_120 120 171 I/O_121 121 172 I/O_124 174 124 I/O_125 125 175 176⁺ I/O_127 127 I/O_128 177 128 178^Q I/O_129 129 179 131 I/O_131 186^A I/O_132 132 GL_2 133 180 GL_3 134 181 187^V I/O_135 135 I/O_136 136 188 190^Q I/O_137 137 I/O_139 139 191 I/O_140 140 192⁺

Table 1: Pin Mapping (Continued)

Signal	A500K	SX-A
I/O_143	143	193
I/O_144	144	194
I/O_145	145	195 ⁺
I/O_146	146	196
I/O_147	147	197
I/O_148	148	198 ⁺
I/O_149	149	199
I/O_150	150	200
I/O_151	151	202 ⁺
I/O_152	152	203 ⁺
I/O_153	153	204
I/O_154	154	205 ⁺
I/O_155	155	206
I/O_158	158	189 ⁺
I/O_159	159	207
I/O_160	160	3
I/O_161	161	4+
I/O_163	163	5
I/O_164	164	6 ⁺
I/O_165	165	7
I/O_166	166	8
I/O_167	167	9
I/O_168	168	10
I/O_169	169	13
I/O_172	172	14 ⁺
I/O_173	173	15
I/O_174	174	16
I/O_175	175	17 ⁺
I/O_176	176	18 ^G
I/O_177	177	19 ^V
I/O_179	179	20 ⁺
I/O_180	180	21
I/O_181	181	22
I/O_182	182	23 ⁺
I/O_183	183	24
I/O_184	184	25 ^{+x-}
I/O_185	185	29

Table 1: Pin Mapping (Continued)

Signal	A500K	SX-A
I/O_188	188	31 ⁺
I/O_189	189	32
I/O_190	190	33
I/O_191	191	34
I/O_192	192	35 ⁺
I/O_193	193	36
I/O_194	194	37
I/O_196	196	38
I/O_197	197	39 ⁺
I/O_198	198	42
I/O_199	199	43
I/O_200	200	44
I/O_201	201	45
I/O_202	202	46
I/O_203	203	47
I/O_204	204	48 ⁺
I/O_205	205	49
I/O_206	206	50 ⁺
I/O_207	207	51

Programming Header Connections

Table 2: Programming Header Connections

Signal Name	A500K	SX-A	Header
VDDL_PROG	-	-	J1.1
VDDL_NORMAL	-	-	J1.2
VDDL_PROG	-	-	J1.3
VDDL_NORMAL	-	-	J1.4
VDDL_PROG	-	-	J1.5
VDDL_NORMAL	-	-	J1.6
RCK	110	160	J1.7
TMS	103	11	J1.9
TDO	108	103	J1.11
TDI	102	2	J1.13
TCK	101	208	J1.15
Ground	-	-	J1.17
Ground	-	-	J1.18
VPN	107	-	J1.19
Ground	-	-	J1.20
VPP	106	-	J1.21
VDDP_NORMAL	-	-	J1.22
VDDP_PROG	-	-	J1.23
VDDP_NORMAL	-	-	J1.24
VDDP_PROG	-	-	J1.25
VDDP_NORMAL	-	-	J1.26

Voltage Connections

Table 3: V_{DDL} Connections

J1.1	ProASIC 16	ProASIC 88	ProASIC 171
J1.3	ProASIC 36	ProASIC 126	ProASIC 187
J1.5	ProASIC 71	ProASIC 142	

VDDL_PROG

The signals above are V_{DDL} (Logic Array Voltage) connections to the ProASIC device and the programming header. These signals are mapped to the appropriate SX-A V_{CCA} (SX-A Logic Array Voltage) pins through the adapter board. Note that the SX-A V_{CCA} and ProASIC V_{DDL} supplies are both 2.5V.

Table 4: V_{CCA} Connections

J1.2	SX-A 27	SX-A 114	SX-A 184
J1.4	SX-A 41	SX-A 130	
J1.6	SX-A 78	SX-A 145	

VDDL_NORMAL

The signals above are V_{CCA} connections to the SX-A device and the programming header. These signals are also mapped to the appropriate ProASIC V_{DDL} pins through the adapter board. Note that the SX-A V_{CCA} and ProASIC V_{DDL} supplies are both 2.5V.

Table 5: V_{CCI} Connections

J1.22	SX-A 12	SX-A 98	SX-A 164
J1.24	SX-A 40	SX-A 115	SX-A 201
J1.26	SX-A 60	SX-A 148	

VDDP_NORMAL

The signals above are the V_{CCI} connections to the SX-A device. Note that the SX-A V_{CCI} and ProASIC V_{DDP} both supply voltage to the I/O ring.

Table 6: V_{DDP} Connections

J1.23	ProASIC 53	ProASIC 123	ProASIC 186
J1.25	ProASIC 72	ProASIC 138	ProASIC 208
ProASIC 22	ProASIC 89	ProASIC 157	
ProASIC 40	ProASIC 104	ProASIC 170	

VDDP_PROG

The signals above are V_{DDP} connections to the ProASIC device. Note that the SX-A V_{CCI} and ProASIC V_{DDP} both supply voltage to the I/O ring.

Table 7: GROUND Connections

J1.17	ProASIC 65	ProASIC 162	SX-A 79
J1.18	ProASIC 81	ProASIC 178	SX-A 105
J1.20	ProASIC 97	ProASIC 195	SX-A 129
ProASIC 1	ProASIC 105	SX-A 1	SX-A 131
ProASIC 17	ProASIC 122	SX-A 26	SX-A 146
ProASIC 29	ProASIC 130	SX-A 28	SX-A 157
ProASIC 41	ProASIC 141	SX-A 52	SX-A 183
ProASIC 52	ProASIC 156	SX-A 77	SX-A 185

ProASIC Pin Descriptions

I/O User Input/Output (2.5V or 3.3V)

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with standard LVTTL and LVCMOS specifications. Unused I/O pins are configured as inputs with a pull-up resistor.

NC No Connect

It is recommended that this pin not be connected to the circuitry on the board.

GL Global Input Pin

Low skew input pin for clock or other global signals. Input only. This pin can be configured with a pull-up resistor.

GND Ground

Common ground supply voltage

V_{DDL} Logic Array Power Supply Pin 2.5V supply voltage.

 V_{DDP} I/O Pad Power Supply Pin

2.5V or 3.3V supply voltage

V_{PP} Programming Supply Pin

This pin must be connected to V_{DDP} during normal operation, or it can remain at 16.5V in an ISP application. This pin must not float.

V_{PN} Programming Supply Pin

This pin must be connected to GND during normal operation, or it can remain at –12V in an ISP application. This pin must not float.

TMS Test Mode Select

The TMS pin controls the use of Boundary Scan circuitry.

TCK Test Clock

Clock input pin for Boundary Scan

TDI Test Data In

Serial input for Boundary Scan

TDO Test Data Out

Serial output for Boundary Scan

TRST Test Reset Input

An optimal Boundary Scan reset pin

RCK Running Clock

A free running clock is required during programming if the programmer cannot guarantee that TCK will be uninterrupted.

SX-A Pin Descriptions

I/O User Input/Output (2.5V, 3.3V, or 5.0V)

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with standard LVTTL, LVCMOS, and PCI specifications. Unused I/O pins are configured as tristate outputs.

NC No Connect

It is recommended that this pin not to be connected to the circuitry on the board.

CLKA/B Clock A and B

These two pins are inputs for the clock distribution networks. Input levels are compatible with standard TTL, LVTTL, and PCI specifications. If not used, the pin(s) must be set LOW or HIGH; it must not be left floating.

GND Ground

Common ground supply voltage

V_{CCA} Logic Array Power Supply Pin

2.5V supply voltage

V_{CCI} I/O Pad Power Supply Pin

2.5V, 3.3V or 5.0V supply voltage

TMS Test Mode Select

The TMS pin controls the use of Boundary Scan circuitry.

TCK Test Clock

Clock input pin for Boundary Scan

TDI Test Data In

Serial input for Boundary Scan

TDO Test Data Out

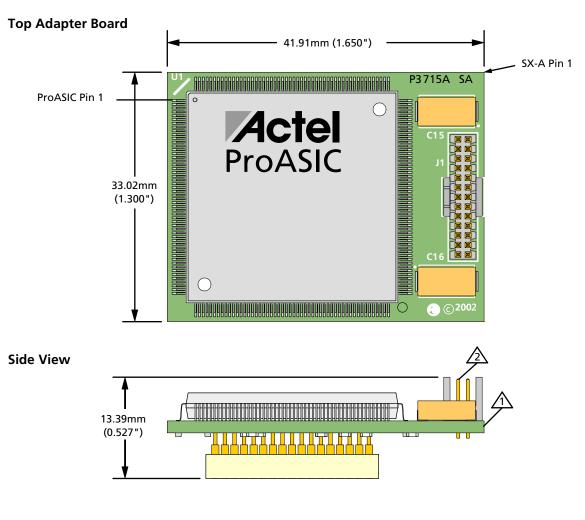
Serial output for Boundary Scan

TRST Test Reset Input

An optional Boundary Scan reset pin

Pin Descriptions and Design Considerations

The ProASIC to SX-A Family prototyping adapter board is an engineering tool that provides the best of both aspects of Actel's devices. The SX-A device family is one of the fastest FPGAs on the market today. The ProASIC device offers a single-chip solution that is also re-programmable. For prototyping and debugging your design, this tool eliminates the need for a socket, and will allow design modifications due to changing requirements and/or design enhancements to be easily implemented. The adapter also allows users to stay in the same software design environment for development with the ProASIC flash technology and the SX-A antifuse technology.


Here are a few points to be considered for the design flow to ensure a smooth transition from the ProASIC flash technology to the SX-A antifuse technology:

- The flash technology is based on a universal logic tile that will support a flip-flop or any 3-input /
 1-output logic function. The SX-A antifuse technology is divided into two dedicated logic tiles: R-Cells
 (flip-flops) and C-Cells (5-input / 1-output logic). This key technology difference will affect your
 utilization numbers when synthesizing and running P&R for each family. This is not a point to be overly
 concerned about, just a point to understand as you develop your application.
- Synthesis tools will handle the EDIF netlist generation differently for each technology. This means that synthesis will have to be run through completely for both technologies.
- As the technologies are different from a logic standpoint, simulation results will have to be verified independently for each technology flow when appropriate.
- Instantiation of Actel macros should be reviewed closely. If you use ACTgen macros, these macros will
 have to be built separately for the ProASIC and the SX-A technologies. The implementation is the
 main difference. ProASIC ACTgen macros will only function properly in ProASIC devices, so you will
 have to build separate SX-A ACTgen macros for the SX-A.
- The ProASIC device on its own has a 3.3V input tolerance. The I/Os for ProASIC can be selected as 2.5V or 3.3V on a pin-by-pin basis. The SX-A devices are capable of 2.5V, 3.3V, or 5.0V. The SX-A pins are only selectable as one voltage. They do not have the pin-by-pin basis capability.
- The programming requirements for the ProASIC reduce the number of available I/Os that are mapped
 to the SX-A base. This means that there are additional I/Os available on the SX-A device if you run out
 with the ProASIC prototype. Refer to Table 1 on page 4 for details regarding SX-A I/Os that remain
 unused in the adapter board.

For specific technical material on either the ProASIC or SX-A device families, please refer to the latest ProASIC Datasheet or SX-A Family Datasheet. Other useful documents are:

- 1. Silicon Sculptor User's Guide
- 2. FlashPro User's Guide
- 3. I/O Cell Selection for ProASIC™ 500K Devices
- 4. Antifuse Macro Library Guide
- 5. Flash Macro Library Guide
- 6. ACTgen Macros Reference Guide

For any other technical questions regarding the SI-SXA-APAPQ208 adapter board, please contact Actel Technical Support by calling 800-262-1060, or by email at *tech@actel.com*.

Substrate: 1.59mm \pm 0.18mm (0.0625" \pm 0.007") FR4/G10 or equivalent high temp material. 17 μ m (1/2 oz.) Cu clad. SnPb plating.

Test points: material - Phosphor Bronze; plating - Sn over 1.27 μ m (50 μ ") Ni. Gold flash on contact end.

Figure 2: QFP Adapter

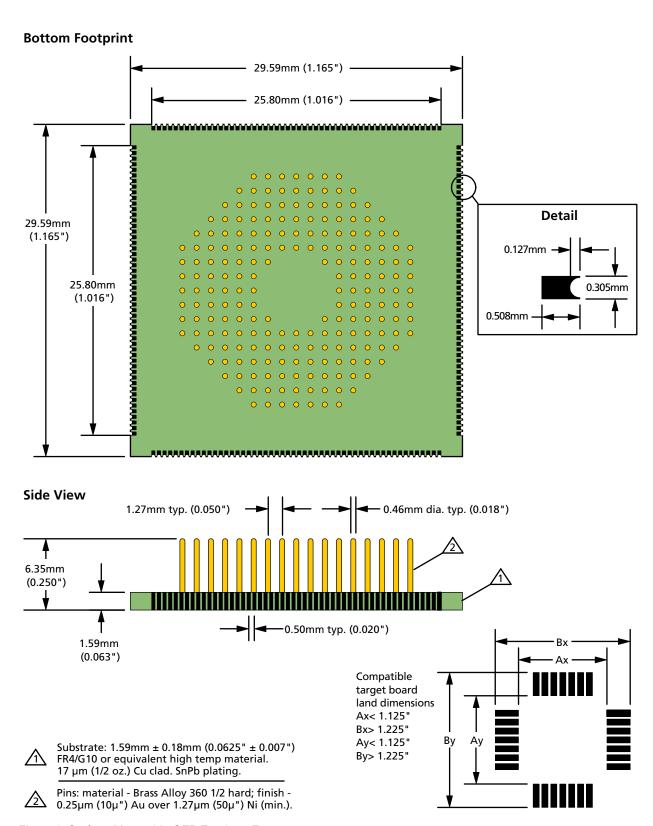


Figure 3: Surface-Mountable QFP Emulator Foot

For more information, visit our website at http://www.actel.com

Actel Corporation

2061 Stierlin Court Mountain View, CA 94043-4655 USA Phone 650.318.4200 Fax 650.318.4600

Actel Europe Ltd.

Dunlop House, Riverside Way Camberley, Surrey GU15 3YL United Kingdom Phone +44 (0)1276.401450 Fax +44 (0)1276.401490

Actel Japan

EXOS Ebisu Building 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150, Japan **Phone** +81.03.3445.7671 **Fax** +81.03.3445.7668

Actel Hong Kong

39th Floor, One Pacific Place 88 Queensway, Admiralty Hong Kong **Phone** +852.227.35712 **Fax** +852.227.35999

© 2003 Actel Corporation. All rights reserved. Actel and the Actel logo are trademarks of Actel Corporation. All other brand or product names are the property of their respective owners.