- Low Noise
- No External Components Required
- Replace Chopper Amplifiers at a Lower Cost
- Wide Input-Voltage Range
. . 0 to ± 14 V Typ
- Wide Supply-Voltage Range
. . . $\pm 3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$

NC-No internal connection

description/ordering information

These devices offer low offset and long-term stability by means of a low-noise, chopperless, bipolar-input-transistor amplifier circuit. For most applications, external components are not required for offset nulling and frequency compensation. The true differential input, with a wide input-voltage range and outstanding common-mode rejection, provides maximum flexibility and performance in high-noise environments and in noninverting applications. Low bias currents and extremely high input impedances are maintained over the entire temperature range. The OP07 is unsurpassed for low-noise, high-accuracy amplification of very-low-level signals.

These devices are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
ORDERING INFORMATION

$\mathrm{T}_{\mathbf{A}}$	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	PDIP (P)	Tube of 50	OP07CP	OP07CP
		Tube of 50	OP07DP	OP07DP
	SOIC (D)	Tube of 75	OP07CD	OP07C
		Reel of 2500	OP07CDR	
		Tube of 75	OP07DD	OP07D
		Reel of 2500	OP07DDR	

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

symbol

PRECISION OPERATIONAL AMPLIFIERS

SLOS099E - OCTOBER 1983 - REVISED MAY 2004
schematic

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage: V_{CC} (see Note 1) ... 22 V
$\mathrm{V}_{\text {CC- }}$ (see Note 1) ... 22 V
Differential input voltage (see Note 2) ... 30 V
Input voltage, V_{l} (either input, see Note 3) ... 222 V
Duration of output short circuit (see Note 4) .. Unlimited
Package thermal impedance, θ_{JA} (see Notes 5 and 6): D package 97${ }^{\circ} \mathrm{C} / \mathrm{W}$
P package $85^{\circ} \mathrm{C} / \mathrm{W}$

Lead temperature $1,6 \mathrm{~mm}$ ($1 / 16 \mathrm{inch}$) from case for 10 seconds $260^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC} and V_{CC}.
2. Differential voltages are at $I N+$ with respect to $I N-$.
3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V , whichever is less.
4. The output may be shorted to ground or to either power supply.
5. Maximum power dissipation is a function of $T_{J}(\max), \theta_{\mathrm{JA}}$, and T_{A}. The maximum allowable power dissipation at any allowable ambient temperature is $\mathrm{P}_{\mathrm{D}}=\left(\mathrm{T}_{\mathrm{J}}(\max)-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$. Selecting the maximum of $150^{\circ} \mathrm{C}$ can affect reliability.
6. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

			MIN	MAX	UNIT
$\mathrm{V}_{\mathrm{CC} \pm}$	Supply voltage		± 3	± 18	V
$\mathrm{V}_{\text {IC }}$	Common-mode input voltage	$\mathrm{V}_{\mathrm{CC} \pm}= \pm 15 \mathrm{~V}$	-13	13	V
T_{A}	Operating free-air temperature		0	70	${ }^{\circ} \mathrm{C}$

electrical characteristics at specified free-air temperature, $\mathrm{V}_{\mathrm{CC}} \pm= \pm 15 \mathrm{~V}$ (unless otherwise noted)

NOTE 7: Since long-term drift cannot be measured on the individual devices prior to shipment, this specification is not intended to be a warranty. It is an engineering estimate of the averaged trend line of drift versus time over extended periods after the first 30 days of operation.
operating characteristics, $\mathrm{V}_{\mathrm{C}} \pm= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST	OP07C	OP07D	UNIT
		CONDITIONS \dagger	TYP	TYP	
V_{n}	Equivalent input noise voltage	$\mathrm{f}=10 \mathrm{~Hz}$	10.5	10.5	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=100 \mathrm{~Hz}$	10.2	10.3	
		$\mathrm{f}=1 \mathrm{kHz}$	9.8	9.8	
$\mathrm{V}_{\mathrm{N} \text { (PP) }}$	Peak-to-peak equivalent input noise voltage	$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz	0.38	0.38	$\mu \mathrm{V}$
In_{n}	Equivalent input noise current	$\mathrm{f}=10 \mathrm{~Hz}$	0.35	0.35	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=100 \mathrm{~Hz}$	0.15	0.15	
		$\mathrm{f}=1 \mathrm{kHz}$	0.13	0.13	
IN(PP)	Peak-to-peak equivalent input noise current	$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz	15	15	pA
SR	Slew rate	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	0.3	0.3	V/us

[^0]APPLICATION INFORMATION

Figure 1. Input Offset-Voltage Null Circuit

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	$\text { e Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
OP-07DPSR	ACTIVE	SO	PS	8	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
OP-07DPSRE4	ACTIVE	SO	PS	8	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
OP-07DPSRG4	ACTIVE	SO	PS	8	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br})$	CU NIPDAU	Level-1-260C-UNLIM
OP07CD	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
OP07CDE4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
OP07CDG4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
OP07CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
OP07CDRE4	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
OP07CDRG4	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
OP07CP	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
OP07CPE4	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
OP07DD	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
OP07DDE4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
OP07DDG4	ACTIVE	SOIC	D	8	75	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
OP07DDR	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
OP07DDRE4	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
OP07DDRG4	ACTIVE	SOIC	D	8	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
OP07DP	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
OP07DPE4	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The $\mathrm{Pb}-\mathrm{Free} / \mathrm{Green}$ conversion plan has not been defined.
Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
www.ti.com 4-Jun-2007
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. Tl has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
OP-07DPSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
OP07CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
OP07DDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
OP-07DPSR	SO	PS	8	2000	346.0	346.0	33.0
OP07CDR	SOIC	D	8	2500	340.5	338.1	20.6
OP07DDR	SOIC	D	8	2500	340.5	338.1	20.6

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $.006(0,15)$ per end.
D Body width does not include interlead flash. Interlead flash shall not exceed $.017(0,43)$ per side.
E. Reference JEDEC MS-012 variation AA.

MECHANICAL DATA

PS (R-PDSO-G8)
PLASTIC SMALL-OUTLINE PACKAGE
(
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 .

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Tl under the patents or other intellectual property of TI .
Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Amplifiers	
Data Converters	amplifier.ti.com
DSP	dataconverter.ti.com
Clocks and Timers	dsp.ti.com
Interface	www.ti.com/cocks
Logic	nterace.ti.com
Power Mgmt	ogic.ti.com
Microcontrollers	Dowe.ti.com
RFID	nicrocontroler.ti.com
RF/IF and ZigBee® Solutions	NWw.ti-rfid.com

Applications	
Audio	www.ti.com/audio
Automotive	www.ticom/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medica
Military	www.ti.com/military
Optical Networking	www.ticom/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ticom/vided
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

[^0]: \dagger All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise noted.

