
MG1264
User Manual

Low Power H.264 and AAC codec

Mobilygen Corporation
 2900 Lakeside Drive #100

Santa Clara, CA 95054
Tel: (408) 869-4000
Fax: (408) 980-8044

email: info@mobilygen.com

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Copyright © 2004, 2005 Mobilygen Corporation

Mobilygen and the Mobilygen logo are registered trademarks of Mobilygen Corporation, Inc.
All rights reserved.

All other products and services mentioned in this publication are the trademarks, service marks,
registered trademarks, or registered servicemarks of their respective owners.

Document Version: 0.8

Mobilygen Corporation
2900 Lakeside Drive #100
Santa Clara, CA 95054

Telephone 1 (408) 869-4000
FAX 1 (408) 980 8044

www.mobilygen.com
2 | Mobilygen Corp Confidential

About This Document
This manual provides a complete reference for the MG1264 Low Power H.264 and AAC Codec
for Mobile Devices User Manual.

Audience
This document assumes that the reader has knowledge of:

• Mobile Video product architectures

• Video Standards

Conventions
The following conventions were used in this manual:

When computer output listings are shown, an effort has been made not to break up the lines
when at all possible. This is to improve the clarity of the printout; for this reason, some listings
will be indented, and others will start at the left edge of the column.

Notation Example Meaning and Use

Courier typface .ini file Code Listings, names of files, symbols, and directo-
ries, are shown in courier typeface.

Bold Courier
typeface

install In a command line, keywords are shown in bold,
non-italic, Courier typeface. Enter them exactly as
shown.

Italics Note: Notes about the subject are shown with a header in
italics.

Bold Italics Important: Important information about the subject is shown
with the header in bold Italics. This information
should not be ignored.

Square Brackets [version] You may, but need not, select one item enclosed
within brackets. Do not enter the brackets

Angle Brackets <username> You must provide the information enclosed within
brackets. Do not enter the brackets

Bar les | les.out You may select one (but not more than one) item
from a list separated by bars. Do not enter the bars.
Confidential Mobilygen Corp. | 3

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Terms

H.264

This manual makes reference to the term H.264 and MPEG4 Part 10 Advanced Video Coding
(AVC). The full name for the standard is ITU-T Rec. H.264 / ISO/IEC 11496-10, “Advanced
Video Coding”, and information can be found on the standard at:

• http://www.iec.ch/

The H.264 standard was jointly developed by the Video Coding Experts Group (VCEG) of the
International Telecommunications Union (ITU) and the MPEG committee of ISO/IEC. The two
identical standards are ISO MPEG4 Part 10 of MPEG4, and ITU-T H.264, but it is commonly
referred to as “Advanced Video Coding” or AVC.

AAC

AAC is the MPEG-4 Advanced Audio Coding standard. Information on AAC can be found at:

• http://www.aac-audio.com/
4 | Mobilygen Corp Confidential

http://www.iec.ch/
http://www.aac-audio.com/

Table of Contents

Chapter 1. Overview... 13
1.1: Architecture .. 14
1.2: MG1264 Codec Applications .. 15
1.3: Features .. 17

1.3.1: MG1264 Codec Specifications... 17
1.3.2: H.264 Encoder Target Performance ... 17
1.3.3: PAL Resolution H.264 ... 18
1.3.4: SVGA 800x600 Video Resolution ... 18
1.3.5: Video Input and Output Scaling ... 18
1.3.6: User Control of H.264 Encoder Features (Tools) 19
1.3.7: The AAC Audio CODEC... 20
1.3.8: I/O Control.. 20

Chapter 2. MG1264 Codec Host Interface 21
2.1: MG1264 Codec Host Interface Physical Description 21

2.1.1: Connection Diagram... 21
2.1.2: MG1264 Codec Host Interface Signals .. 22

2.2: MG1264 Codec Host Interface Logical Description 23
2.2.1: System Control ... 23
2.2.2: Compressed Data I/O Through the MG1264 Codec Host Interface 24
2.2.3: Interrupts... 24
2.2.4: DMA Channels ... 24
2.2.5: Latency Considerations .. 24

2.3: Read/Write Timing .. 25
2.3.1: Read Timing Sequence in Read Enable Mode 26
2.3.2: Write Data Timing in Write Enable Mode 27
2.3.3: Read Timing Sequence in Read/Write and Enable Mode 28
2.3.4: Write Data Timing in Read/Write and Enable Mode 29

2.4: DMA Transfers .. 30
2.4.1: Pacing using the HDMAREQ Pin .. 30
2.4.2: Pacing using the EMFifoRdReq/EMFifoWrReq Bits 30
2.4.3: Pacing using the HWAIT Pin ... 30

2.5: MG1264 Codec Register Indirect Access .. 31
2.5.1: Reading a Register.. 31
2.5.2: Writing a Register... 31

2.6: Programming the MG1264 Codec Host Interface 32
2.6.1: Register Maps ... 32

2.7: Register Definitions ... 34
2.7.1: Configuration, Data, and Status Registers...................................... 34
2.7.2: Peripheral Interrupt Registers... 36
2.7.3: Clock and Configuration Registers .. 37
2.7.4: Accessing External Memory Port 1 and Port 2 39
Confidential Mobilygen Corp. | 5

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
2.7.5: Reading the MG1264 Codec’s External Memory 39
2.7.6: Checking the FIFO Status .. 40
2.7.7: External Memory Access Registers.. 41
2.7.8: Bitstream Write FIFO Access Registers... 47

Chapter 3. Video Interface... 49
3.1: Video Interface Usage .. 50

3.1.1: Interlaced ITU-RBT.656 Video Interfaces..................................... 50
3.1.2: Progressive Video Interfaces for D1 Resolution and Below.......... 52
3.1.3: Progressive Video Interface for 800x600 (SVGA) and 768x576... 55

3.2: Video Interface Signals .. 56
3.3: Video Interface Timing .. 56

Chapter 4. SDRAM Interface .. 57
4.1: The SDRAM Interface ... 57
4.2: Mobile SDRAM Features .. 59

4.2.1: Voltage Operation (3.3V, 2.5V, 1.8V) ... 59
4.2.2: Temperature Compensated Self-Refresh.. 59
4.2.3: Deep Power Down.. 59
4.2.4: Drive Strength Control ... 59

Chapter 5. Audio Interface .. 61
5.1: Audio Interface Overview .. 61
5.2: Audio Interface Signals .. 62
5.3: I2S Audio Waveforms ... 63
5.4: Left Justified Audio Waveform ... 64
5.5: 16, 20, 24, 32-Bit Left Justified Audio Waveform 64

Chapter 6. Miscellaneous Signals .. 65

Chapter 7. Programming ... 67
7.1: Modes Of Operation ... 67
7.2: Power-Up and Initialization ... 67
7.3: Encode and Decode Mode ... 67

Chapter 8. Bringing up the MG1264 Codec..................................... 69
8.1: Decoder Bringup .. 69

8.1.1: Phase 1: Decoding a Small Elementary NAL Video Stream 69
8.1.2: Phase 2: Decoding a Large Elementary NAL Video Stream with Soft-

ware Flow Control 73
8.1.3: Phase 3: Decoding A QBOX Stream.. 76

8.2: Encoder Bringup .. 78
8.2.1: Phase 1: Recording a Small Elementary NAL Video Stream 78
8.2.2: Phase 2: Recording a Large Elementary NAL Video Stream with Soft-

ware Flow Control 80
8.2.3: Phase 3: Recording a QBOX Stream.. 81
6 | Mobilygen Corp Confidential

Chapter 9. Firmware Loader... 85
9.1: Firmware Image Format ... 86

9.1.1: Header... 86
9.1.2: Global Pointer Block .. 86
9.1.3: Pre-download CSR ... 86
9.1.4: Firmware... 87
9.1.5: Uninitialized Data... 87
9.1.6: End.. 88

9.2: Sample Code .. 88

Chapter 10. Application Programming Interface............................ 91
10.1: Host Interface and the Hardware Abstraction Layer 92

10.1.1: QHAL_EM ... 92
10.1.2: QHAL_MBOX ... 94
10.1.3: QHAL_BS .. 95

10.2: Media Processor Firmware Programming Model 96
10.2.1: Control Objects... 96
10.2.2: Commands, Events, and Inter-Processor Communications 96
10.2.3: Global Pointer Block .. 97
10.2.4: Sending a Command to the Firmware .. 98
10.2.5: Reading Events from the Media Processor Firmware 99
10.2.6: Subscribing and Unsubscribing to Events 101
10.2.7: Configuration Parameters ... 102
10.2.8: Status Block.. 103

10.3: Bitstream Formats .. 104
10.3.1: QBox Bitstream Format ... 104
10.3.2: Elementary Video... 105

10.4: System Control Interface Object .. 106
10.4.1: Overview .. 106
10.4.2: Object ID .. 106
10.4.3: State Machine ... 106
10.4.4: Commands.. 106
10.4.5: Configuration Parameters ... 107
10.4.6: Events ... 109

10.5: Status Block ... 110
10.5.1: heartbeat ... 110
10.5.2: droppedEvents .. 110
10.5.3: evReadWritePointers .. 110
10.5.4: pendingEvent .. 110

10.6: H.264/ACC Decoder Interface Object ... 111
10.6.1: Overview .. 111
10.6.2: Logical View of the AV Decoder... 111
10.6.3: AV Decoder Features ... 111
10.6.4: Sending Encoded Bitstreams to the Decoder 113
10.6.5: Object ID .. 115
10.6.6: State Machine ... 116
Confidential Mobilygen Corp. | 7

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10.6.7: Commands .. 119
10.6.8: Configuration Parameters ... 126
10.6.9: Events ... 129
10.6.10: Status Block.. 131
10.6.11: Trick Play Techniques .. 132

10.7: H.264/AAC Encoder Interface Object ... 135
10.7.1: Overview .. 135
10.7.2: Logical View of the AV Encoder ... 135
10.7.3: AV Encoder Features ... 135
10.7.4: Receiving Encoded Bitstreams from the Encoder...................... 136
10.7.5: Controlling the Video Bitrate ... 138
10.7.6: Object ID .. 139
10.7.7: State Machine ... 139
10.7.8: Commands .. 140
10.7.9: Configuration Parameters ... 144
10.7.10: Events ... 150
10.7.11: Status Block.. 151

Chapter 11. Specifications.. 153
11.1: Electrical Characteristics .. 154

11.1.1: Absolute Maximum Ratings... 154
11.1.2: Operating Conditions.. 154
11.1.3: DC Characteristics.. 155
11.1.4: Power Supply Pin Voltages .. 155
11.1.5: Power-Up and Power-Down Constraints 155

11.2: AC Timing ... 156
11.2.1: MG1264 Codec Host Interface Timing...................................... 157
11.2.2: Video Interface AC Timing.. 160
11.2.3: Audio Interface AC Timing.. 161
11.2.4: SDRAM Interface AC Timing ... 163

11.3: Packaging ... 164
11.4: Package Dimensions .. 170
8 | Mobilygen Corp Confidential

List of Figures

MG1264 Codec Block Diagram ...14
H.264/AVC Tools/Profiles ...15
Camera System-Level Block Diagram ...16
MG1264 Codec Host Interface Connection Diagrams ...21
Register Logical View ..23
Read Access Timing in Read Enable Mode ...26
Write Access Timing in Write Enable Mode ..27
Read Access Timing in Read/Write and Enable Mode ..28
Write Access Timing in Read/Write and Enable Mode ...29
ITU-R BT.656 NTSC Interlaced Video Standard ..50
ITU-R BT.656 PAL Interlaced Video Standard ...51
NTSC Progressive Video ..52
PAL Progressive Video ..53
640 x 480 Progressive Video ..54
800 x 600 (SVGA) Progressive Video ...55
Video Interface Connections ..56
Video Interface Timing ...56
MG1264 Codec SDRAM Interface ..58
Audio Interface Connections with the System Host CPU as the Audio Clock Master ..

62
Audio Interface Connections with the DAC/ADC as the Audio Clock Master63
I2S Left-justified Audio Waveform ..63
Left-justified Audio Waveform ..64
16, 20, 24, and 32-Bit Left Justified Audio Waveform ..64
QHAL Structure ..92
Command Transfer Timing ..98
Event Transfer Timing ..100
Event Queuing ..101
Idealized Decoder Datapath ..111
Decoder Buffer Structure ..113
Idealized Encoder Datapath ..135
Circular Buffer Management of Bitstream Blocks ...136
MG1264 Codec Host Interface AC Timing Waveform ..157
MG1264 Codec HDMAREQ Timing ...157
HWAIT Timing ..158
HIRQ Timing ..158
Video Interface Timing Diagram ..160
Audio Timing Diagram ...161
Audio Interface Timing Diagram ...161
MG1264 Codec Pinout Diagram ..164
MG1264 Codec Pinout Diagram (Continued) ..165
156-pin BGA Package Mechanical Dimensions ..170
Confidential Mobilygen Corp. | 9

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10 | Mobilygen Corp Confidential

List of Tables

H.264 Video Bitrates and Resolutions for NTSC... 17
H.264 Video Bitrates and Resolutions for PAL ... 18
AAC Encoder Features ... 20
MG1264 Codec Host Interface Pin Descriptions ... 22
MG1264 Codec Register and External Memory Device Register Map 32
Input Video Resolutions ... 49
Video Interface Signals... 56
DRAM Interface Signal List... 57
AAC Encoder Features ... 61
Audio Interface Signal List... 62
Miscellaneous Signals... 65
Forward State .. 118
Backward State ... 118
Absolute Maximum Ratings ... 154
Operating Conditions .. 154
DC Characteristics .. 155
Host Interface Timing ... 159
Video Interface AC Timing Values .. 160
Audio Interface AC Timing Values.. 162
MG1264 Codec Pin List Sorted Alphabetically ... 166
MG1264 Codec Pin List by Side .. 168
Confidential Mobilygen Corp. | 11

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
12 | Mobilygen Corp Confidential

Chapter 1. Overview
The MG1264 is a single-chip H.264 VGA codec IC that enables mobile products to capture,
play and share video with three times the processing power of competing devices, while us-
ing substantially less power. The MG1264 is a complete A/V codec solution including both
a H.264 VGA 30 frames-per-second video codec, and a high fidelity two-channel AAC au-
dio codec. Power consumption while encoding is 185mW for the complete device includ-
ing VGA 30fps video, 2-channel AAC audio, and all chip I/O functions.

Mobilygen has developed a unique chip architecture dedicated to low power video process-
ing. The patented EVE (Enabling Video Everywhere) architecture was used to implement
the MG1264 and includes the following key technologies:

• Dedicated hardware media processing engines that are active only when data is being
processed

• A highly-optimized hardware multi-threaded embedded microcontroller with single
cycle context switching that controls all media processing operations and allows for
easy integration of customer differentiating features

• An advanced video pre-processor that greatly improves H.264 encoder efficiency and
overall video quality

• An ultra-efficient video processing oriented memory controller with forward seeking
transaction reordering capabilities that doubles memory efficiency allowing all func-
tions to operate with a single 16-bit SDRAM

• Patented low-power H.264 video coding algorithms developed specifically to maxi-
mize video quality

• Easy to control through standard firmware APIs; no customer programming is re-
quired

The MG1264 is designed for use in still cameras, video cameras, cell phones with integral
cameras, personal media players, peripheral products, and any other applications that re-
quire H-264 encoding and/or decoding capabilities with very low power consumption.
Confidential Mobilygen Corp. | 13

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
1.1 Architecture
The MG1264 Low Power H.264 and AAC Codec for Mobile Devices is built of the following
blocks as shown in Figure 1-1:

• MG1264 Codec Host Interface

• Video Input and Preprocessor (VPP)

• H.264 Video Codec

• Video Output Processor (VPU)

• AAC Audio CODEC

Figure 1-1 MG1264 Codec Block Diagram

ITU-R 656 (8-bit)

16-bit
Data

27 MHz CLK
H.264
Codec

AAC Codec

Video Preprocessor

Video Output Processor

SDRAM
64 Mbits

Host Interface

LRCLK

SCLK

BCLK

I2SIN

I2SOUT

MG1264 Codec

Control
&

Compressed Data I/O

Uncompressed
Video

Uncompressed
Audio

Address (6-bit)

Data (16-bit)

HCS

HRE

HWE

HIRQ

HDMAREQ
14 | Mobilygen Corp Confidential

Overview MG1264 Codec Applications
1.2 MG1264 Codec Applications
The MG1264 Low Power H.264 and AAC Codec for Mobile Devices is a VGA 30 fps H.264
and two-channel AAC Audio CODEC that enables Audio and Video (A/V) capture and play-
back functionality in mobile video products.

These include:

• Digital Still Cameras

• Solid-State Camcorders

• Portable Media Players

• Camera-enabled Cellular Phones

The MG1264 Codec produces syntactically correct A/V bitstreams that can be decoded by any
standard-compliant decoder that incorporates support for H.264 and AAC playback such as
software decoders on a PC.

The MG1264 Codec is designed for low power operation. Mobile video products based on the
MG1264 Codec can play back any A/V content that it captures, just like a traditional tape based
camcorder. It can also play back any H.264 encoded stream using the tools we support.
Figure 1-2 shows the MG1264 Codec’s capabilities.

Figure 1-2 H.264/AVC Tools/Profiles

The MG1264 Codec is designed to be a coprocessor to a main System Host Processor and
ASIC. Figure 1-3 is a camera system block diagram that shows how MG1264 Codec is integrat-
ed into a system. The main camera ASIC performs the traditional camera functions such as in-
terface to the CCD, color processing, zoom lens control, LCD display, storage, etc.

I & P
Quarter-Pel MC

Different Block Sizes
In-Loop Deblocking Filter

Intra Prediction
CAVLC

Multiple Reference
Frames

Flexible
Macroblock

Order

Arbitrary
Slice
Order

Baseline

Extended

High

Main
B Slices

SI / SP Slices

Data Partitioning

CABAC

Weighted
Prediction

Field Coding

Alt
Quant
Tables

8 x 8
Transform

MG1264 (Frame Coding)

MG1264 (Field Coding)

MG2264

= Baseline and Main Profice Compatible

= Main Profile Compatible

= High Profile Compatible

MBAFF
Confidential Mobilygen Corp. | 15

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Figure 1-3 Camera System-Level Block Diagram

ITU-R 656 (8-bit)

16-bit
Data

27 MHz CLK

SDRAM
64 Mbit

LRCLK

SCLK

BCLK

I2SIN

I2SOUT

MG1264 Codec

System
Host CPU

 ASIC

FLASH
Media

Storage

USB

CCD

Audio
Codec

Flash
Strobe

I2C

GPIO

LCD

SDRAMBoot
FLASH

Address (6-bit)

Data (16-bit)

HCS

HRE

HWE

HIRQ

HDMAREQ

H.264
Codec

AAC Codec

Video Preprocessor

Video Output Processor

Host Interface
16 | Mobilygen Corp Confidential

Overview Features
1.3 Features
The MG1264 Low Power H.264 and AAC Codec for Mobile Devices has these features:

1.3.1 MG1264 Codec Specifications

The MG1264 Codec implements a subset of H.264 tools that achieves superior video quality
with a low power budget. The MG1264 Codec does not implement the following H.264 tools:
B-frames, CABAC, MAFF, ASO, and FMO.

The MG1264 Codec can be best classified in the following way: If Frame mode coding is used,
then the MG1264 Codec produces Baseline and Main Profile compatible streams (see
Figure 1-2 on page 15). Baseline is the primary encoding mode for the MG1264 Codec because
today all DSC sensors use progressive scan CCDs, however the MG1264 Codec also supports
Field mode coding. Streams coded as Field mode fall within the Main Profile.

The decoder in the MG1264 Codec decodes only streams created with the same subset of tools
as listed above. For Baseline Profile, ASO and FMO are not widely used, so the primary limi-
tation is in picture resolution (maximum 800x600x25 fps) and bitrate (10 Mbps).

1.3.2 H.264 Encoder Target Performance

The MG1264 Codec is capable of standard definition full resolution (720x480 or 640x480) vid-
eo encoding. While resolution down sampling can provide excellent visual results for video en-
coding at lower bitrates, the product emphasis is on full resolution.

Table 1-1 lists target bitrates and corresponding resolutions for NTSC.

Table 1-1 H.264 Video Bitrates and Resolutions for NTSC

Video Bitrate
(kbps)

Horizontal
Resolution

(Pixels)

Vertical
Resolution

(Pixels) fpsa Notes Regarding The Source Video

300 320 240 30 QVGA, progressive, square pixel sensor

500 640 240 30 Half-vertical, progressive, square pixel sensor

1000 640 480 30 VGA, progressive, square pixel sensor

1500 640 480 30 VGA, progressive, square pixel sensor

2000 640 480 30 VGA, progressive, square pixel sensor

3000 640 480 30 VGA, progressive, square pixel sensor

3000 640 720 30 HD-M

3000 800 600 25 SVGA, progressive, square pixel sensor

300 352 240 30 SIF, progressive, rectangular pixel sensor

500 720 240 30 Half-vertical, interlace, rectangular pixel sensor

1000 720 480 30 D1, interlace, rectangular pixel sensor

1500 720 480 30 D1, interlace, rectangular pixel sensor

2000 720 480 30 D1, interlace, rectangular pixel sensor

3000 720 480 30 D1, interlace, rectangular pixel sensor

a. 30 fps is a shorthand representation for the traditional 29.976 NTSC frame rate. In applications where display
on a traditional TV is required, the frame rate should be set accordingly.
Confidential Mobilygen Corp. | 17

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
1.3.3 PAL Resolution H.264

The MG1264 Codec is also capable of PAL encoding, as shown in Table 1-2.

1.3.4 SVGA 800x600 Video Resolution

The MG1264 Codec supports a maximum video resolution of 800x600 (SVGA). This resolu-
tion is intended for playback on PCs. This SVGA mode is intended to work with the standard
27 MHz video clock. The maximum frame rate is 25 fps.

1.3.5 Video Input and Output Scaling

The MG1264 Codec is capable of performing video scaling both on the input during pre-encod-
ing and on the output during post-decoding. This allows the MG1264 Codec to use alternate
video resolutions to facilitate display on standard televisions. It also facilitates applications that
make use of lower resolutions such as streaming over low bandwidth networks.

Input Video Scaling

The Input Video Scaler is designed to take VGA/D1 resolution video input and generate the tar-
get encoding resolutions listed in Table 1-1. The MG1264 Codec supports a maximum horizon-
tal resolution of 800pixels.

Output Video Scaling

The Output Video Scaler is designed to up-sample any resolution less than D1 for display on a
standard television or down-sample for display on alternative displays. The Output Video Scal-
er also has the ability to perform square pixel to rectangular pixel conversion to support display
of square pixel video correctly on a traditional TV display.

Table 1-2 H.264 Video Bitrates and Resolutions for PAL

Video
Bitrate
(kbps)

Horizontal
Resolution

(pixels)

Vertical
Resolution

(Pixels) fps Notes Regarding The Source Video

300 352 288 25 QSIF, progressive, rectangular pixel sensor

500 720 288 25 Half-vertical, progressive, rectangular pixel sensor

1000 720 576 25 D1, interlace, rectangular pixel sensor

1500 720 576 25 D1, interlace, rectangular pixel sensor

2000 720 576 25 D1, interlace, rectangular pixel sensor

3000 720 576 25 D1, interlace, rectangular pixel sensor
18 | Mobilygen Corp Confidential

Overview Features
1.3.6 User Control of H.264 Encoder Features (Tools)

The encoder features are selectable. Each feature has settings and/or ranges that affect the over-
all compression efficiency accordingly. This section shows the key features and their associated
target settings.

Picture Resolution

Table 1-1 shows the video resolutions. This selection uses the Input Video Scaler to produce the
desired resolution.

Video Frame Rate

The primary target for the MG1264 Codec is natural motion frame rate like that of NTSC video
at 30 fps. The following alternate frame rates are also supported:

• 25 fps (for PAL applications)

• 15 fps

Video Bitrate

The target bitrates are listed in Table 1-1 for given resolutions. The maximum video data rate is
10 Mbps. The minimum video data rate is 300 kbps. The bitrate can be specified in 100 kbps
increments from 300 kbps to 10 Mbps.

Picture Type

The Picture Type refers to as Frame or Field coding. Frame mode is the most common mode
used in Digital Still Cameras because they have progressive sensors at 30 fps. Field mode is
used in most other mobile devices. When Field mode is selected, all fields are encoded sepa-
rately. The MG1264 Codec does not implement MBAFF mode.

GOP Structure

The MG1264 Codec uses I-frames and P-frames only. No B-frames. The GOP structure is user
selectable. The default GOP length is 15.
Confidential Mobilygen Corp. | 19

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
1.3.7 The AAC Audio CODEC

The MG1264 Codec can encode two-channel AAC audio encoding with 16-bit samples at sam-
ple rates of 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, and 48 kHz. The target audio bitrate is 10%
of the associated video bitrate, with an appropriate sample rate.

User Control of the AAC Encoder Features

The audio encoder features are selectable. Each feature has settings and/or ranges that affect the
overall compression efficiency, accordingly. Table 1-3 shows the key features and their associ-
ated target settings.

1.3.8 I/O Control

The MG1264 Codec is intended to be a co-processor in a system with a basic architecture as
shown in Figure 1-3. All system control is done by the System Host CPU, including booting
and initializing the MG1264 Codec. All camera I/O functions are controlled by the system host
processor. I/O functions include: LCD control, camera sensor control, TV output, mass storage
controllers, USB, audio codec, etc.

Table 1-3 AAC Encoder Features

Feature Options

Channels Mono (1) or Stereo (2)

Sample rate 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, or 48 kHz

Bitrate 8 kbps - 384 kbps
20 | Mobilygen Corp Confidential

Chapter 2. MG1264 Codec Host
Interface
The System Host CPU controls the MG1264 Low Power H.264 and AAC Codec for Mobile
Devices through the MG1264 Codec Host Interface. The MG1264 Codec Host Interface
also serves as the compressed data interface. This interface allows for directly-addressable
access to the MG1264 Codec DRAM, the MG1264 Codec Bitstream write FIFO, and the
MG1264 Codec registers.

2.1 MG1264 Codec Host Interface Physical Description
The MG1264 Codec Host Interface is modeled on the commonly used generic asynchro-
nous-style interface. It consists of a 16-bit data path (HDATA[15:0], six bits of address
(HADDR[6:1]), and control signals.

2.1.1 Connection Diagram

The MG1264 Codec Host Interface connection diagram is shown in Figure 2-1.

Figure 2-1 MG1264 Codec Host Interface Connection Diagrams

MG1264
Codec

Host Interface

HCS

HRE

HWE

HIRQ

HDMAREQ

HDATA[15:0]

HADDR[6:1]

WAIT
Confidential Mobilygen Corp. | 21

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
The MG1264 Codec Host Interface has a single Host Chip Select and six address lines. All of
the device’s resources reside in a single address space, and the registers that can be addressed
by the six address lines are shown in Table 2-2.

2.1.2 MG1264 Codec Host Interface Signals

The signals that comprise the MG1264 Codec Host Interface are shown in Table 2-1.

Table 2-1 MG1264 Codec Host Interface Pin Descriptions

Pin Name Signal Name Direction Description

HDATA[15:0] Data [15:0] Bidirectional 16-bit Host Data Bus

HADDR[6:1] Address [6:1] Inputs Six bits of Host Address

HCS Host Chip
Select

Input Active Low Host Chip Select. This chip select is
used to access the MG1264 Codec’s Internal reg-
isters, External memory, bitstream read and write
FIFO registers.

HRE RE Input Active Low Read Enable

HWE WE Input Active Low Write Enable

HIRQ INT Output
(Open Collector)

Active Low, Open Collector Host Interrupt Re-
quest

HDMAREQ Host DMA Request Output Bitstream DMA Request associated with the Bit-
stream port

HWAIT WAIT Output Active low wait pin. The MG1264 Codec asserts
this pin to extend the bus cycle until it is able to ac-
cept data (during a write cycle) or present data
(during a read cycle).
22 | Mobilygen Corp Confidential

MG1264 Codec Host Interface MG1264 Codec Host Interface Logical Description
2.2 MG1264 Codec Host Interface Logical Description
The MG1264 Codec Host Interface works in two completely different modes:

• System Control

• Compressed Data I/O Interface

These are discussed in the sections that follow.

Figure 2-2 Register Logical View

2.2.1 System Control

The MG1264 Codec is controlled through the MG1264 Codec Host Interface. When the
MG1264 Codec is powered up, the System Host CPU must first download the firmware through
the MG1264 Codec Host Interface, and then initialize the MG1264 Codec. The System Host
CPU controls the operation of the MG1264 Codec by reading and writing specific registers in-
side the MG1264 Codec.

The MG1264 Codec is able to accept new commands or requests from the System Host CPU at
least once every frame period. Control commands such as start/stop/pause are executed within
one frame time of being issued.

MailboxMailbox

CSRCmd
CSRAddr

CSRDataH
CSRDataL
CSRStat

PeriIntClr
PeriIntSet

PeriIntPend

EMCmd
EMXferSize
EMAddrH
EMAddrL
EMStat

EMConfig
EMReadPort
EMWritePort
EMFifoStatus

BFifoConfig
BFifoStatus
BFifoWrPort

Interrupt
Controller

Memory
Controller

Read FIFO

Write FIFO

Read FIFO

Write FIFO

Write FIFO

Mailbox

Demux
ISR

Code/Data

4:2:0 Picture
Buffer (x8)

Command
Buffer

Current Event
Buffer

Event Queue

Video Bit Buffer
(3 GOP)

Audio Bit Buffer

Audio Output
Buffer

8MB DRAM

Firmware
Control

Host Interface Register Set

(256 Entries)

(256 Entries)
Confidential Mobilygen Corp. | 23

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
2.2.2 Compressed Data I/O Through the MG1264 Codec Host Interface

The MG1264 Codec Host Interface also transports compressed data in to (decoding) and out of
(encoding) the MG1264 Codec. The System Host CPU can use Direct Memory Access (DMA)
to facilitate these transfers.

2.2.3 Interrupts

There is a single interrupt pin defined: HIRQ. The MG1264 Codec has four interrupt sources
that are logically OR'd together internally to form the HIRQ:

• CSRInt: Configuration Status Register Interrupt

• EMInt: External Memory Interrupt

• BMInt: Bitstream Memory Interrupt

• MBint: Mailbox Interrupt

For information on the Interrupt Registers, refer to “Peripheral Interrupt Registers” on page 36.

2.2.4 DMA Channels

The MG1264 Codec has two generic External Memory DMA engines. One is for System Host
CPU access to the MG1264 Codec’s DRAM including the mailbox. You can find information
on this DMA interface in the section “External Memory Access Registers” on page 41.

The other is for Bitstream transfers. The Bitstream DMA is used for reading a bitstream from,
and writing a bitstream to the Bitstream Write FIFO. You can also find information on this
DMA interface in the section “Bitstream Write FIFO Access Registers” on page 47.

2.2.5 Latency Considerations

Because internal operations such as DRAM and register access can incur a lot of latency, the
MG1264 Codec’s Host Interface uses an indirect access method to access the internal MG1264
Codec’s processor resources. In this mode of operation, read and write accesses are determin-
istic and no Host Ready (or Wait) signaling is needed.
24 | Mobilygen Corp Confidential

MG1264 Codec Host Interface Read/Write Timing
2.3 Read/Write Timing
This section provides generic timing information for the MG1264 Codec Host Interface. For
specific timing information, refer to “Specifications” on page 153. For information on the pro-
gramming sequence needed to read or write a register, refer to “Register Definitions” on
page 34.

The Read/Write control signals are programmable, and can be set to work in either Read Enable
and Write Enable mode (default) or Read/Write and Enable mode. Note that these options are
available in both single Host Chip Select mode and two Host Chip Select mode. Each of these
modes is discussed in the sections that follow.

The MG1264 Codec defaults to the separate Read Enable and Write Enable signalling as shown
in Figure 2-3 and Figure 2-4. To put the host interface into Read/Write and Enable mode
(Figure 2-5 and Figure 2-6), the very first transaction on the read bus must be a Write transac-
tion using the separate Enable and RD/WR signaling to register address 0x18. This register is
not defined as a valid register and a write to it has no logical effect other than to put the chip
into separate Enable and RD/WR mode. A data value of 0x0000 should be used.
Confidential Mobilygen Corp. | 25

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
2.3.1 Read Timing Sequence in Read Enable Mode

Figure 2-3 shows the timing for a System Host CPU read from the MG1264 Codec in Read En-
able mode.

Figure 2-3 Read Access Timing in Read Enable Mode

1. The System Host CPU must assure that the address bus (HADDR[6:1]) is stable before
asserting Host Chip Select (HCS).

2: The System Host CPU asserts the Host Chip Select signal to inform the MG1264 Codec
that a read is in process. When Host Chip Select (HCS) is used, it accesses the MG1264
Codec’s Internal registers and External memory.

3: The System Host CPU asserts the Host Read Enable (HRE) signal to inform the
MG1264 Codec that the operation will be a read.

4: The data becomes available on HDATA[15:0].

5: Once the data has been taken, the System Host CPU de-asserts the Host Read Enable
(HRE) signal to indicate to the MG1264 Codec that the transaction is complete.

6: The MG1264 Codec removes the output data from the data bus (HDATA[15:0]).

7: The System Host CPU then de-asserts the address bus (HADDR[6:1]) and the Host
Chip Select to complete the transaction.

HCS

HADDR[6:1]

HDATA[15:0]

HWE

HRE

Address

Read Data

1

2

3

4

5

7

6

26 | Mobilygen Corp Confidential

MG1264 Codec Host Interface Read/Write Timing
2.3.2 Write Data Timing in Write Enable Mode

Figure 2-4 shows the timing for a System Host CPU write to the MG1264 Codec in Write En-
able mode.

Figure 2-4 Write Access Timing in Write Enable Mode

1. The System Host CPU must assure that the address bus (HADDR[6:1]) and data to be
written (on HDATA[15:0]) are stable before asserting the Host Chip Select (HCS).

2: The System Host CPU asserts the Host Chip Select signal to inform the MG1264 Codec
that a write is in process. When the Host Chip Select (HCS) is used, it accesses the
MG1264 Codec’s Internal registers and External memory.

3: The System Host CPU asserts the Host Write Enable (HWE) signal to inform the
MG1264 Codec that the operation will be a write.

4: The System Host CPU de-asserts the Host Write Enable (HWE) signal to indicate to
the MG1264 Codec that the write is complete.

5: The System Host CPU de-asserts the Address bus (HADDR[6:1]), Write Data bus
(HDATA[15:0]), and the Host Chip Select to indicate to the MG1264 Codec that the
transaction is complete.

HCS

HADDR[6:1]

HDATA[15:0]

HWE

HRE

Address

Write Data
1

1

2

3 4

5

5

5

Confidential Mobilygen Corp. | 27

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
2.3.3 Read Timing Sequence in Read/Write and Enable Mode

Figure 2-3 shows the timing for a System Host CPU read from the MG1264 Codec in Read/
Write mode.

Figure 2-5 Read Access Timing in Read/Write and Enable Mode

1. The System Host CPU must assure that the address bus (HADDR[6:1]) is stable before
asserting Host Chip Select (HCS).

2: The System Host CPU asserts the Host Chip Select signal to inform the MG1264 Codec
that a read is in process. When Host Chip Select (HCS) is used, it accesses the MG1264
Codec’s Internal registers and External memory.

3: The System Host CPU sets the Read/Write signal high to inform the MG1264 Codec
that the operation will be a read.

4: The System Host CPU asserts the Enable signal to start the read cycle.

5: The data becomes available on HDATA[15:0].

6: Once the data has been taken, the System Host CPU de-asserts the Enable signal to in-
dicate to the MG1264 Codec that the transaction is complete.

7: The System Host CPU then de-asserts the address bus (HADDR[6:1]) and the Host
Chip Select to complete the transaction.

8: The MG1264 Codec removes the output data from the data bus (HDATA[15:0]).

HCS

HADDR[6:1]

HDATA[15:0]

RD/WR

ENABLE

Address

Read Data

1

2

3

5

6

8

4

7

28 | Mobilygen Corp Confidential

MG1264 Codec Host Interface Read/Write Timing
2.3.4 Write Data Timing in Read/Write and Enable Mode

Figure 2-4 shows the timing for a System Host CPU write to the MG1264 Codec in Read/Write
and Enable mode.

Figure 2-6 Write Access Timing in Read/Write and Enable Mode

1. The System Host CPU must assure that the address bus (HADDR[6:1]) and data to be
written (on HDATA[15:0]) is stable before asserting the Host Chip Select (HCS).

2: The System Host CPU asserts the Host Chip Select signal to inform the MG1264 Codec
that a write is in process. When the Host Chip Select (HCS) is used, it accesses the
MG1264 Codec’s Internal registers and External memory.

3: The System Host CPU sets the Read/Write signal (RD/WR) low to inform the MG1264
Codec that the operation will be a write.

4: The System Host CPU asserts the Enable signal to start the write cycle.

5: The System Host CPU de-asserts the Read/Write signal and Enable signal to indicate
to the MG1264 Codec that the write is complete.

6: The System Host CPU de-asserts the Address bus (HADDR[6:1]), Write Data bus
(HDATA[15:0]), and the Host Chip Select to indicate to the MG1264 Codec that the
transaction is complete.

HCS

HADDR[6:1]

HDATA[15:0]

RD/WR

ENABLE

Address

Write Data
1

1

2

3 5

6

6

6

4 5
Confidential Mobilygen Corp. | 29

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
2.4 DMA Transfers
The MG1264 Codec can be configured to do DMA transfers. When the MG1264 Codec is in
DMA mode, the transfers on the external bus are a sequence of individual read and write trans-
actions to a FIFO port mapped to a host interface register. See “Accessing External Memory
Port 1 and Port 2” on page 39 for information on how to set up a DMA transfer.

When in DMA mode, the individual read or write transactions making up the DMA transactions
must be paced. The MG1264 Codec signals the external host that it is ready to accept a read or
write transaction. The pacing is accomplished using one of three mechanisms:

• The external HDMAREQ pin

• A register bit (EMFifoRdReq/ EMFifoWrReq)

• The external HWAIT pin

2.4.1 Pacing using the HDMAREQ Pin

The MG1264 Codec asserts the HDMAREQ pin when a programmable threshold (EM-
DThresh, see page 45) is reached in the DMA transfer FIFO. For a read DMA, the MG1264
Codec asserts the HDMAREQ pin when EMDThresh number of words is available to be trans-
ferred to the System Host CPU. The MG1264 Codec deasserts the HDMAREQ pin once the
number of words available to be read falls below EMDThresh.

For a write DMA, the HDMAREQ pin is asserted when the MG1264 Codec is able to accept
EMDThresh number of 1b-bit words to be written. The HDMAREQ pin is de-asserted once the
number of words available to be written falls below EMDThresh.

2.4.2 Pacing using the EMFifoRdReq/EMFifoWrReq Bits

The EMFifoRdReq or EMFifoWrReq Bits in the EMFifoStatus Register (see page 46) are re-
flections of the HDMARQ pin and are set accordingly if in read or write DMA mode.

2.4.3 Pacing using the HWAIT Pin

Pacing using the HWAIT pin is slightly different than in HDMAREQ mode. In this case, the
external host does not use the HDMAREQ or the EMFifoRdReq/EMFifoWrReq mechanisms.
In the case of a read DMA transaction, the System Host CPU initiates read transactions without
monitoring the HDMAREQ pin or the EMFifoRdReq bits. If the MG1264 Codec does not cur-
rently have data available for reading, it asserts the HWAIT signal during that individual read
transaction until data is available. The transaction is not completed until HWAIT is deasserted.

In a write DMA transaction, the external host initiates write transactions without monitoring the
HDMAREQ pin or the EMFifoRdReq bits. If the MG1264 Codec is not currently able to accept
write data, it asserts the HWAIT signal during that individual write transaction until it is able to
accept data. The transaction is not completed until HWAIT is de-asserted.
30 | Mobilygen Corp Confidential

MG1264 Codec Host Interface MG1264 Codec Register Indirect Access
2.5 MG1264 Codec Register Indirect Access
The System Host CPU processor can only indirectly access the MG1264 Codec’s internal Con-
figuration and Status (CSR) registers and Mailbox registers (see Figure 2-2). This is done
through a set of registers mapped to the Host Chip Select (HCS) over the MG1264 Codec Host
Interface. These registers are not accessed during normal operation, and indirect addressing is
typically only used by the bootloader.

2.5.1 Reading a Register

The procedure to read an MG1264 Codec register is:

1. Before accessing a register, set up the PeriIntEn register to enable the Configuration
or Status Register (CSR) interrupt, if that is the preferred method for getting the “Ac-
cess Done” message. This only needs to be done once for all CSR accesses.

2: Write the Address to the CSRAddr register.

3: Write the Command bits (CSRAccess = 0) to the CSRCmd register.

4: Poll the CSRDone bit in the CSRStat register, or wait for the interrupt.

5: Read the return data from the CSRRdDataH and CSRRdDataL registers.

6: Read the CSRStat register and check that it has the expected value.

7: Clear the CSRInt bit in the PeriIntPend register, if using interrupts or
clear the CSRDone bit in the CSRStatus register, if polling.

2.5.2 Writing a Register

The procedure to write a MG1264 Codec register is:

1. Before accessing a register, set up the PeriIntEn register to enable the Configuration
or Status Register (CSR) interrupt, if that is the preferred method for getting the “Ac-
cess Done” message. This only needs to be done once for all CSR accesses.

2: Write the data to be written to the CSRWrDataH and CSRWrDataL registers.

3: Write the Address the CSRAddr register.

4: Write the Command bits (CSRAccess = 0) to the CSRCmd register.

5: Poll the CSRDone bit in the CSRStat register, or wait for the interrupt.

6: Read the CSRStat register and check that it has the expected value.

Usage Note: In some cases, it may be necessary to read CSRRdData to check a value
returned by the internal processor if the operation is more complex than a simple reg-
ister read or write.

7: Clear the CSRInt bit in the PeriIntPend register, if using interrupts or
clear the CSRDone bit in the CSRStatus register, if polling.
Confidential Mobilygen Corp. | 31

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
2.6 Programming the MG1264 Codec Host Interface

2.6.1 Register Maps

Table 2-2 shows the MG1264 Codec Registers, External Memory Device Register Map, Bit-
stream Read Memory and Bitstream Write FIFO Device Register Map. These registers are ad-
dressed when the Host Chip Select (HCS) signal is asserted.

Table 2-2 MG1264 Codec Register and External Memory Device Register Map

Register Offset Access Description Page

CSRCmd 0x0020 R/W Configuration/Status Register Command 34

CSRAddr 0x0022 R/W Configuration/Status Register Address 34

CSRWrDataH 0x0024 R/W Configuration/Status Register Write Data High 34

CSRWrDataL 0x0026 R/W Configuration/Status Register Write Data Low 34

CSRRdDataH 0x0028 Read Configuration/Status Register Read Data High 35

CSRRdDataL 0x002A Read Configuration/Status Register Read Data Low 35

CSRStat 0x002C R/W Configuration/Status Register Status 35

PeriIntPend 0x002E R/W Peripherals Interrupt Pending 36

PeriIntEnSet 0x0030 R/W Peripherals Interrupt Enable - Set 36

PeriIntEnClr 0x0032 R/W Peripherals Interrupt Enable - Clear 36

ClkConfig 0x0034 R/W Clock Configuration Register 37

PLL Dividers 0x0036 R/W PLL Dividers Register 37

ChipID 0x0038 R Chip ID Register 38

EM1Cmd 0x0000 R/W External Memory DMA Command 41

EM1XferSize 0x0002 R/W External Memory DMA Transfer Size 41

EM1SrcAddrH 0x0004 R/W External Memory DMA Source Address High or Starting Vertical/
Y Source Address

42

EM1SrcAddrL 0x0006 R/W External Memory DMA Source Address Low or Starting Horizon-
tal/X Source Address

42

EM1DestAddrH 0x0008 R/W External Memory DMA Destination Address High or Starting Ver-
tical/Y Destination Address

42

EM1DestAddrL 0x000A R/W External Memory DMA Destination Address Low or Starting Hor-
izontal/X Destination Address

42

EM1Status 0x000C Read External Memory DMA Status 44

EM1RemCount 0x000E Read External Memory DMA Transfer Remainder Count 44

EM1Config 0x0010 R/W External Memory DMA Configuration 45

EM1FifoRdPort 0x0012 Read External Memory DMA FIFO Read Port (from memory) 46
32 | Mobilygen Corp Confidential

MG1264 Codec Host Interface Programming the MG1264 Codec Host Interface
EM1FifoWrPort 0x0014 R/W External Memory DMA FIFO Write Port (to memory) 46

EM1FifoStatus 0x0016 Read Bitstream Memory DMA Status 46

BFifoWrPort 0x0060 R/W Bitstream FIFO Write Port (to Media Engine) 47

BFifoStatus 0x0062 Read Bitstream FIFO Status Register 47

BFifoConfig 0x0064 R/W Bitstream FIFO Command Register 47

EM2Cmd 0x0040 R/W Bitstream Memory DMA Command 41

EM2XferSize 0x0042 R/W Bitstream Memory DMA Transfer Size 41

EM2SrcAddrH 0x0044 R/W Bitstream Memory DMA Source Address High
or Starting Vertical/Y Source Address

42

EM2SrcAddrL 0x0046 R/W Bitstream Memory DMA Source Address Low
or Starting Horizontal/X Source Address

42

EM2DestAddrH 0x0048 R/W Bitstream Memory DMA Destination Address High
or Starting Vertical/Y Destination Address

42

EM2DestAddrL 0x004A R/W Bitstream Memory DMA Destination Address Low
or Starting Vertical/Y Source Address

42

EM2Status 0x004C Read Bitstream Memory DMA Status 44

EM2RemCount 0x004E Read Bitstream Memory DMA Transfer Remainder Count 44

EM2Config 0x0050 R/W Bitstream Memory DMA Configuration 45

EM2FifoRdPort 0x0052 Read Bitstream Memory DMA FIFO Read Port
(from memory)

46

EM2FifoWrPort 0x0054 R/W Bitstream Memory DMA FIFO Write Port
(to memory)

46

EM2FifoStatus 0x0056 Read Bitstream Memory DMA FIFO Status 46

Table 2-2 MG1264 Codec Register and External Memory Device Register Map

Register Offset Access Description Page
Confidential Mobilygen Corp. | 33

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
2.7 Register Definitions

2.7.1 Configuration, Data, and Status Registers

Command/Status Register Command CSRCmd Offset: 0x0020

Command/Status Register Address CSRAddr Offset: 0x0022

Command/Status Register Write Data High CSRWrDataH Offset: 0x0024

Command/Status Register Write Data Low CSRWrDataL Offset: 0x0026

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CSR

Access
CSRLen Reserved CSRBlockID

Reserved fields should be ignored (masked) when read, and only 0's should be written to them.
CSRAccess When a 0 is written to this field, it initiates a CSR read from the address provided in the

CSRAddr register.
When a 1 is written to this field, it initiates a CSR write to the address provided in the
CSRAddr register with the data provided in the CSRWrData register.

CSRLen 000 = 4 byte (word) access
001 = 1 byte access
010 = 2 byte (halfword) access
Other codes are reserved and should not be used.

CSRBlockID Block ID for a register access

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CSRAddr

CSRAddr Address (within a register block) for register access. Expected to be word-aligned (bits
[1:0] are 0) for 4-byte access and half-word aligned (bit [0] is 0) for 2-byte access.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CSRWrDataH

CSRWrDataH High 16-bit register from which the data for a CSR write is taken.
Used with CSRWrDataL.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CSRWrDataL

CSRWrDataL Low 16-bit register from which the data for a CSR write is taken.
Used with CSRWrDataH
34 | Mobilygen Corp Confidential

MG1264 Codec Host Interface Register Definitions
Command/Status Register Read Data High CSRRdDataH Offset: 0x0028

Command/Status Register Read Data Low CSRRdDataL Offset: 0x002A

Command/Status Register Status CSRStat Offset: 0x002C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CSRRdDataH

CSRRdDataH High 16-bit register containing the data returned for a CSR read or the status information
returned for a write. Used with CSRRdDataL This register is read-only.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CSRRdDataL

CSRRdDataL Low 16-bit register containing the data returned for a CSR read or the status information
returned for a write. Used with CSRRdDataH. This register is read-only.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CSRRespID Res CSRRespLen Res CSR-

Err
CSR-
Done

Reserved fields should be ignored (masked) when read and only 0’s should be written to them.
CSRRespID Block ID information from l_obid port when a CSR access is completed (which block re-

sponded). If it doesn't match the CSRBlockID originally programmed, then something is
wrong. This field is read-only.

CSRRespLen Length of the access actually done. For a write, it should be 1; for a read, it should match
the CSRLen code originally programmed. If not, then something is wrong. This field is
read-only.

CSRErr If set to 1 when CSRDone is set, an error occurred in the access.
This should never happen. This field is read-only.

CSRDone Set to 1 after each CSRAccess completes. When the hardware sets this bit to 1, the read
data (or write response status) is available in the CSRRdData register.
It is not required to clear this bit before initiating a new access; however, software should
clear it if it is polling this bit to determine when an access completes, instead of using the
CSRInt interrupt.
Confidential Mobilygen Corp. | 35

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
2.7.2 Peripheral Interrupt Registers

Peripheral Interrupt Pending Register PeriIntPend Offset: 0x002E

Peripheral Interrupt Enable Set Register PeriIntEnSet Offset: 0x0030

The Peripheral Interrupt Enable function is implemented with separate “Set” and “Clear” reg-
ister addresses, allowing each interrupt enable bit to be set or cleared independently of the other
bits, so that no read-modify-write cycles are required.

Peripheral Interrupt Enable Clear Register PeriIntEnClr Offset: 0x0032

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved Mbox

1Int
Mbox
0Int

BMInt EMInt CSR
Int

Reserved fields should be ignored (masked) when read and only 0's should be written to them.
The bits in these registers are “sticky”; if an interrupt event occurs and sets a bit, the bit stays set until it is
cleared. A bit can only be cleared by writing a 1 to it; writing a 0 to it has no effect (so the same value that was
read from the register can be written back to clear only the interrupt bits that were previously set, not any new
ones).
Mbox1Int This bit is a logical OR of the Mbox1RdyCPU0Int and Mbox1ReadCPU0Int field of the

MboxIntCPU0 QCC register.
Mbox0Int This bit is a logical OR of the Mbox0RdyCPU0Int and Mbox0ReadCPU0Int field of the

MboxIntCPU0 QCC register.
BMInt Bitstream Read Memory DMA transfer is done (BMBusy goes from 1 to 0)
EMInt External Memory DMA transfer is done (EMBusy goes from 1 to 0)
CSRInt CSR Access is done.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved PeriIntEnSet

Reserved fields should be ignored (masked) when read and only 0's should be written to them.
PeriIntEnSet Writing a 1 to a bit at the address for PeriIntEnSet sets the corresponding bit to 1 in Peri-

IntEn; writing a 0 has no effect. Reading the register at the address for PeriIntEnSet re-
turns the current value for PeriIntEn.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved PeriIntEnClr

Reserved fields should be ignored (masked) when read and only 0's should be written to them.
PeriIntEnClr Writing a 1 to a bit at the address for PeriIntEnClr clears the corresponding bit in PeriIntEn;

writing a 0 has no effect. Reading the register at the address for PeriIntEnClr returns the
current value for PeriIntEn.
36 | Mobilygen Corp Confidential

MG1264 Codec Host Interface Register Definitions
2.7.3 Clock and Configuration Registers

Clock Configuration Register ClkConfig Offset: 0x0034

Phase Lock Loop Dividers PLLDividers Offset: 0x0036

The core_clk is generated from XIN using the following equation:

The default, assuming that XIN = 27 MHz is core_clk = 81 MHz. When programming these
bits, ClkEn must be set to 0 first before setting the dividers or PLLBypass. Once programmed,
the PLL must be given time (0.5 ms.) to lock before setting ClkEn = 1. When programming
PLLBypass, the PLL does not need time to lock and ClkEn can be set to 1 immediately.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved Vclk

Invert
PLL

Power
Down

ClkEn

Reserved fields should be ignored (masked) when read and only 0's should be written to them.
VclkInvert Internally inverts VID_CLK. This allows for sampling of video pins on the negative edge of

VLK. It is very useful for solving setup and hold issues on the video bus.
0: video_clk = VID_CLK (default)
1: video_clk = ~VID_CLK

PLLPowerDown The PLL is put in powerdown mode. Note: ClkGate must be enabled (set to 0) first (sepa-
rate register programming transactions) before setting PLLPowerDown to 1.
PLLPowerDown must be set to 0 before clearing (set to 1) ClkGate.
0: Normal Operation
1: PLL is in powerdown (default)

ClkEn This register glitchlessly turns off core_Clk, video_clk, and audio_aclk and holds them low.
0: Clocks are gated off and held low (default)
1: Clocks are active

core_clk XIN M×
X

----------------------=

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PLL

Bypass
Reserved PllFeedBackDivider PLLOutput

Divider
Reserved fields should be ignored (masked) when read and only 0's should be written to them.
PLLBypass The register bypasses the PLL and sets the pll_clk = XIN.

0: PLL is in normal mode (default)
1: PLL is bypassed.

PLLFeedBack
Divider

The PLL feedback divider M. The default=3
Restriction: 2<=M<=37 for 27 MHz input clock.

PLLOutput
Divider

00: The PLL output divider X is set to 8.
01: The PLL output divider X is set to 1 (Default).
10: The PLL output divider X is set to 2.
11: The PLL output divider X is set to 4.
Confidential Mobilygen Corp. | 37

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Chip ID Register ChipID 0x0038

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ProductID TapeOutRev MaskID

this is a Read-only register
ProductID 8’b00000001
TapeOutRev 4’b0001
MaskID 4’b0000
38 | Mobilygen Corp Confidential

MG1264 Codec Host Interface Register Definitions
2.7.4 Accessing External Memory Port 1 and Port 2

The System Host CPU accesses the MG1264 Codec’s external DRAM through a set of registers
mapped to the Host Chip Select (HCS) pin over the MG1264 Codec Host Interface. The base
address of this device, and the offset for each of these registers is listed in Table 2-2. These reg-
isters are explained in detail in the sections that follow.

Two generic External Memory DMA engines have been implemented in the MG1264 Codec.
The first one (EM1) is intended for generic System Host CPU access to the DRAM, including
the mailbox. It is selected by asserting the HCS pin and register addresses 0x0000 to 0x0016.
The other (EM2) is intended for compressed bitstream transfers and is selected by asserting
HCS and register addresses 0x0040 to 0x0056. These interfaces are identical designs.

Usage Note: While these two interfaces are identical in design, the MG1264 Codec
only brings the DMA request signal from the device when HADDR[6] is high
(Bitstream write) out to a pin. HDMAREQ is a logical OR of the DMA requests for
External Memory Port 1 and 2. When the EMCmd register is written with an active
value, the HDMAREQ signal represents the request generated from the External
memory access logic. Otherwise, it represents the request signal generated from the
Bitstream FIFO logic.

During initialization, the System Host CPU can use the HCS pin and HADDR = 1
to do a block-level DMA of a DRAM image into the MG1264 Codec’s DRAM.
However, during normal operating mode, it is envisioned that the modes when
HADDR[6] is high will only be used for Bitstream transfers to the MG1264 Codec.
The HCS0 device is used mainly for mailbox messaging those transactions can
happen on a polled IO basis.

2.7.5 Reading the MG1264 Codec’s External Memory

The procedure to read a block of the MG1264 Codec’s memory is:

1. Verify that the EMBusy bit in the EMStatus register is set to 0; otherwise, wait until it
is.

2: If necessary, update the MG1264 Codec's DMA engine configuration in the EMConfig
register.

3: Store the address to be accessed in the EMSrcAddrH and EMSrcAddrL registers.

4: Write the transfer length to the EMXferSize register.

5: Write the “read” command to the EMCmd register (set the EMCmd field to 0b01).

6: Set up the System Host CPU to DMA the data from the EMFifoRdPort to a buffer in
the System Host CPU's memory
or
Loop through enough loads from EMFifoRdPort to read the specified number of words.
You must check the EMFifoStatus in this case. Refer to “Checking the FIFO Status”
on page 40 for additional information.

7: Optionally, check the EMBusy bit in the EMStatus register or use EMInt to determine
when the DMA engine is finished (for a “read” operation, the DMA engine for the Sys-
tem Host CPU can generate an interrupt when the DMA is complete).
Confidential Mobilygen Corp. | 39

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Writing the MG1264 Codec’s External Memory

The procedure to write to a block of the MG1264 Codec’s memory is:

1. Verify that the EMBusy bit in the EMStatus register is set to 0; otherwise, wait until it
is.

2: If necessary, update the MG1264 Codec's DMA engine configuration in the EMConfig
register.

3: Setup the address in the EMDestAddrH and EMDestAddrL registers.

4: Write the transfer length to the EMXferSize register.

5: Write the “write” command to the EMCmd register (set the EMCmd field to 0b10).

6: Set up the System Host CPU to DMA the data from a buffer in the System Host CPU's
memory to the EMFifoWrPort
or
Loop through enough stores to EMFifoWrPort to write the specified number of words.
You must check the EMFifoStatus in this case. Refer to “Checking the FIFO Status”
on page 40 for additional information.

7: Optionally, check the EMBusy bit in the EMStatus register or use EMInt to determine
when the DMA engine is finished (for a “write” operation, the DMA engine for the Sys-
tem Host CPU can generate an interrupt when the DMA is complete from the System
Host CPU's point of view, but the MG1264 Codec may still be working on it).

2.7.6 Checking the FIFO Status

The interface logic asserts a DMA request to the System Host CPU (by asserting HDMAREQ)
when it has available at least EMDThresh words of data in its Read FIFO or when it can accept
at least EMDThresh words of data into its Write FIFO, depending upon the direction of the
transfer programmed in the EMCmd register. If the System Host CPU DMA engine is not used,
individual words can be read (loaded) from or written (stored) to this port, but software must
check the status of the FIFO after every EMDThresh word.
40 | Mobilygen Corp Confidential

MG1264 Codec Host Interface Register Definitions
2.7.7 External Memory Access Registers

These registers are used to access the external memory.

External Memory Command Register EM1Cmd Offset: 0x0000
Bitstream Memory Command Register EM2Cmd Offset: 0x0040

External Memory DMA Transfer Size Register EM1XferSize Offset: 0x0002
Bitstream Memory DMA Transfer Size Register EM2XferSize Offset: 0x0042

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EMCmd EMM

arb
Priority

EM
Endian
Swap

Reserved

Reserved fields should be ignored (masked) when read and only 0’s should be written to them.
This register should not be modified while EMBusy is 1.
EMCmd 00 = Idle: no operation is performed

01 = Read: Initiate transfer from MG1264 Codec Memory, starting at EMSrcAddr, to the
Memory Read FIFO, which can be read by the System Host CPU (Static Bus) via the
EMFifoRdPort.
10 = Write: Initiate transfer from the Memory Write FIFO to MG1264 Codec Memory,
starting at EMDestAddr; the Memory Write FIFO is filled by the System Host CPU (Static
Bus) via the EMFifoWrPort.
11 = Reserved
For all operations, the transfer length is given by EMXferSize.

EMMarbPriority 0 = set to 0 when both EM ports are expected to be simultaneously active.
1 = set to 1 for optimal transfers when only 1 of the 2 EM ports are expected to be active.

EmEndianSwap 0 = Byte order is preserved (default)
1 = Bytes 0 and 1 are swapped during the transfer.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EMXferSize

Reserved fields should be ignored (masked) when read and only 0’s should be written to them.
This register should not be modified while EMBusy is 1
EMXferSize Number of 16-bit data words to transfer. A zero means no words will be transferred; EM-

Busy will not be set.
For Frame Mode, this is interpreted as:
 EMYSize[5:0] = EMXferSize[15:10] - Vertical size of the block to transfer (number of
“rows”)
 EMXSize[9:0] = EMXferSize[9:0] - Horizontal size (in bytes) of the block to transfer (size
of “row”)
Confidential Mobilygen Corp. | 41

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
External Memory DMA Source Address High Register EM1SrcAddrH Offset: 0x0004
Bitstream Memory DMA Source Address High Register EM2SrcAddrH Offset: 0x0044

This pair of registers changes function depending on the type of operation where it is being
used. During DMA Operations, these registers are interpreted as follows:

External Memory DMA Source Address Low Register EM1SrcAddrL Offset: 0x0006
Bitstream Memory DMA Source Address Low Register EM2SrcAddrL Offset: 0x0046

During Frame Buffer Access (EMMode = 00 or 01), these registers are interpreted as follows:

External Memory Y Source Address Register EM1SrcYAddr Offset: 0x0004
Bitstream Memory Y Source Address Register EMSrcYAddr Offset: 0x0044

External Memory X Source Address Register EM1SrcXAddr Offset: 0x0006
Bitstream Memory X Source Address Register EMSrcXAddr Offset: 0x0046

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EMSrcAddrH

EMSrcAddrH Source address for a “read” (System Host CPU <- MG1264 Codec) or “copy” (MG1264
Codec -> MG1264 Codec) operation. Used with EMSrcAddrL. This register should not be
modified while the EMBusy bet is set to 1. During the operation, the hardware updates this

register as it progresses.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EMSrcAddrL

EMSrcAddrL Source address for a “read” (System Host CPU - MG1264 Codec) or “copy” (MG1264 Co-
dec - MG1264 Codec) operation. Used with EMSrcAddrH. This register should not be
modified while the EMBusy bet is set to 1. During the operation, the hardware will update
this register as it progresses.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EMSrcYAddr

EMSrcYAddr Starting Vertical/Y source address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EMSrcXAddr

EMSrcXAddr Starting Horizontal/X source address
42 | Mobilygen Corp Confidential

MG1264 Codec Host Interface Register Definitions
External Memory DMA Destination Addr. High Register EM1DestAddrH Offset: 0x0008
Bitstream Memory DMA Destination Addr. High Register EM2DestAddrH Offset: 0x0048

This pair of registers changes function depending on the type of operation where it is being
used. During DMA Operations, these registers are interpreted as:

External Memory DMA Destination Addr. Low Register EM1DestAddrL Offset: 0x000A
Bitstream Memory DMA Destination Addr. Low Register EM2DestAddrL Offset: 0x004A

During Frame Buffer Access (EMMode=00 or 01), this register is interpreted as:

External Memory Y Destination Addr. Register EM1DestYAddr Offset: 0x0008
Bitstream Memory Y Destination Addr. Register EMDestYAddr Offset: 0x0048

External Memory X Destination Addr. Register EM1DestXAddr Offset: 0x000A
Bitstream Memory X Destination Addr. Register EMDestXAddr Offset: 0x004A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EMDestAddrH

EMDestAddrH Destination address for a “write” (System Host CPU - MG1264 Codec) or “copy” (MG1264
Codec - MG1264 Codec) operation. Used with EMDestAddrL. This register should not be
modified while the EMBusy bet is set to 1. During the operation, the hardware will update
this register as it progresses.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EMDestAddrL

EMDestAddrL Destination address for a “write” (System Host CPU - MG1264 Codec) or “copy” (MG1264
Codec - MG1264 Codec) operation. Used with EMDestAddrH. This register should not be
modified while the EMBusy bet is set to 1. During the operation, the hardware will update
this register as it progresses.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EMDestYAddr

EMDestYAddr Starting Vertical/Y destination address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EMDestXAddr

EMDestXAddr Starting Horizontal/X destination address
Confidential Mobilygen Corp. | 43

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
External Memory Status Register EM1Status Offset: 0x000C
Bitstream Memory Status Register EM2Status Offset: 0x004C

External Memory Remaining Count EM1RemCount Offset: 0x000E
Bitstream Memory Remaining Count EM2RemCount Offset: 0x004E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EM-
Busy

Reserved

Reserved fields should be ignored (masked) when read. This register is read-only.
EMBusy 0 = No operation is in progress; other registers may be changed.

1 = A DMA operation is in progress; the EMCmdParams, EMSrcAddr, EMDestAddr, and
EMConfig registers may not be changed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EMRemCount

Reserved fields should be ignored (masked) when read. This register is read-only.
EMRemCount Number of words remaining to be transferred.

In frame mode this field is interpreted similar to EMXferSize:
EMRemY[5:0] = EMRemCount[15:10] - Remaining number of blocks to transfer

(number of "rows")
EMRemX[9:0] = EMRemCount[9:0] - Remaining number (in bytes) of block to

transfer (size of "row"). This field should be an even number, i.e. EMRemX[0] always
equals 0.
44 | Mobilygen Corp Confidential

MG1264 Codec Host Interface Register Definitions
External Memory Configuration Register EM1Config Offset: 0x0010
Bitstream Memory Configuration Register EM2Config Offset: 0x0050

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EM-
Wait

EMDThresh EM
Burst

EMMode EMBaseId

Reserved fields should be ignored (masked) when read and only 0’s should be written to them.
EMWait 0 = no HWAIT signal generated (default)

1 = HWAIT signal is generated. EMDThresh should be set to 1 when EMWait
is set to 1

EMDThresh When this number of bytes are left in the fifo, the DMAREQ signal or the EMFIFOStatus
bits are deasserted.

EMBurst Number of 16-bit words per internal MG1264 Codec Memory burst access. A DMA oper-
ation is broken into sequential MG1264 Codec memory requests of the specified burst
size. This parameter must be set to a value less than (usually half of) the MG1264 Codec
MMU buffer for the System Host CPU.
Code:

0 = 8 16-bit words
1 = 16 16-bit words (default)

This field is not used when EMMode is set for Frame Buffer access. The entire DMA op-
eration is sent as one internal MG1264 Codec Memory operation (using EMYSize, EMX-
Size, EMY*Addr, and EMX*Addr). The software must take care not to attempt a request
larger than the MG1264 Codec Memory subsystem can handle (the request must be no
larger than the MMU buffer size allocated to the MG1264 Codec Host Interface).

EMMode Use EMMode to control the MG1264 Codec MMU Transaction Mode
00 = Frame Buffer - frame access
01 = Frame Buffer - field access
10 = Linear (default)
11 = reserved; do not use.

EMBaseId EMSrcAddr and EMDestAddr specify addresses (offsets) relative to the MG1264 Codec
Memory Subsystem identified by EMBaseId. (default: 0)
Confidential Mobilygen Corp. | 45

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
External Memory Access FIFO Read Port EM1FifoRdPort Offset: 0x0012
Bitstream Memory Access FIFO Read Port EM2FifoRdPort Offset: 0x0052

External Memory Access FIFO Write Port EM1FifoWrPort Offset: 0x0014
Bitstream Memory Access FIFO Write Port EM2FifoWrPort Offset: 0x0054

External Memory FIFO Status Port EM1FifoStatus Offset: 0x0016
Bitstream Memory FIFO Status Port EM2FifoStatus Offset: 0x0056

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EMFifoRdPort

EMFifoRdPort A read from this port removes and returns a 16-bit data word from the Memory Read FIFO
that was read from the MG1264 Codec's memory. DO NOT WRITE TO THIS REGISTER!
DATA WILL BE LOST!

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EMFifoWrdPort

EMFifoWrPort 16-bit data from the “Static Bus” written to this port's address is placed into the Memory
Write FIFO to be sent to the MG1264 Codec's memory. Reading from this address returns
0's.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved EM

Fifo
RdReq

EM
Fifo

WrReq
Reserved fields should be ignored (masked) when read and only 0’s should be written to them.
EMFifoRdReq 0 = no more words are available for reading beyond the current burst of eight

1 = at least EMDThresh more 16-bit words are available in the Memory Read FIFO
If the System Host CPU’s DMA engine is being used, then flow control is done by the DMA
request line; in this case, it is not necessary for software to check this bit.

EMFifoWrReq 0 = no more words can be accepted beyond the current burst of eight
1 = at least EMDThresh more 16-bit words can be accepted by the Memory Write FIFO
If the System Host CPU’s DMA engine is being used, then flow control is done by the DMA
request line; in this case, it is not necessary for software to check this bit.
46 | Mobilygen Corp Confidential

MG1264 Codec Host Interface Register Definitions
2.7.8 Bitstream Write FIFO Access Registers

The System Host CPU sends a bitstream (e.g., MPEG transport or program stream) to the
MG1264 Codec’s external DRAM through a set of registers. These registers are explained in
detail in the sections that follow.

Bitstream FIFO Write Port BFifoWrPort Offset: 0x0060

Bitstream FIFO Status Register BFifoStatus Offset: 0x0062

Bitstream FIFO Configuration Register BFifoConfig Offset: 0x0064

The interface logic asserts the DMA request to the System Host CPU by driving HDMAREQ
high) when it can accept at least BThresh words of data into its FIFO. If the System Host CPU's
DMA engine is not used, individual words can be written (stored) to this port, but software must
check the status of the FIFO after every BThresh word.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BFifoWrPort

BFifoWrPort 16-bit data from the “Static Bus” written to this port's address is sent to the System Input
Stream Controller of the Media Engine. Reading from this address returns 0's.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved BFifo

WrReq
Reserved fields should be ignored (masked) when read and only 0’s should be written to them.
BFifoWrReq 0 = no more words can be accepted beyond the current burst of DBThresh

1 = at least BBurst more 16-bit words can be accepted by the Bitstream FIFO
If the System Host CPU’s DMA engine is being used, then flow control is done by the DMA
request line; in this case, it is not necessary for software to check this bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved BThresh Res

Reserved fields should be ignored (masked) when read and only 0’s should be written to them.
BThresh When this number of 16-bit words are left in the FIFO, the DMA request signal or the BFi-

foWrReq bit in the BFIFOStatus register is deasserted.
Confidential Mobilygen Corp. | 47

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
48 | Mobilygen Corp Confidential

Chapter 3. Video Interface
The MG1264 Low Power H.264 and AAC Codec for Mobile Devices is able to both send
and receive digitized raw video. This video can be either interlaced or “progressive”. Com-
mon resolutions are shown in Table 3-1.

Table 3-1 Input Video Resolutions

Horizontal Vertical Frame Rate Description

800 600 25 fps SVGA (square pixel)

768 576 25 fps square pixel PAL

720 576 25 fps rectangular pixel PAL

720 480 30 fps rectangular pixel NTSC

640 480 30 fps VGA (square pixel NTSC)

320 240 30 fps QVGA
Confidential Mobilygen Corp. | 49

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
3.1 Video Interface Usage
The pages that follow show the MG1264 Codec in various video applications.

3.1.1 Interlaced ITU-RBT.656 Video Interfaces

The MG1264 Codec has video input and output interfaces for interlaced video that are 656-
compliant. Figure 3-1 shows the diagram for NTSC 656 Interlaced Video, and Figure 3-2 shows
the diagram for PAL 656 Interlaced Video.

In interlaced applications, the video frame is created by taking a line from each of the top and
bottom video fields in sequence as shown in Figure 3-1 and Figure 3-2.

Figure 3-1 ITU-R BT.656 NTSC Interlaced Video Standard

For example:

1. Line 1 from the Top Field

2: Line 1 from the Bottom Field

3: Line 2 from the Top Field

4: Line 2 from the Bottom Field

5: Line 3 from the Top Field

6: Line 3 from the Bottom Field

52
5

Li
ne

s

H
or

iz
on

ta
l B

la
nk

in
g

H
or

iz
on

ta
l B

la
nk

in
g

Top Field

Vertical Blanking

Bottom Field

Video Frame

858

EAV
SAV

720

240

240

Line 21

Line 283

138 720

480
50 | Mobilygen Corp Confidential

Video Interface Video Interface Usage
. . .

479: Line 240 from the Top Field

480: Line 240 from the Bottom Field

A similar sequence is followed for PAL interlaced video, except that a greater number of lines
have to be interlaced.

Figure 3-2 ITU-R BT.656 PAL Interlaced Video Standard

1. Line 1 from the Top Field

2: Line 1 from the Bottom Field

3: Line 2 from the Top Field

4: Line 2 from the Bottom Field

5: Line 3 from the Top Field

6: Line 3 from the Bottom Field

. . .

573: Line 287 from the Top Field

574: Line 287 from the Bottom Field

575: Line 288 from the Top Field

576: Line 288 from the Bottom Field

52
5

Li
ne

s

H
or

iz
on

ta
l B

la
nk

in
g

H
or

iz
on

ta
l B

la
nk

in
g

Top Field

Vertical Blanking

Bottom Field

Video Frame

858

EAV
SAV

720

288

288

Line 23

Line 336

138 720

576
Confidential Mobilygen Corp. | 51

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
3.1.2 Progressive Video Interfaces for D1 Resolution and Below

There is no digital transmission standard for progressive video. The video interfaces (input and
output) of the MG1264 Codec format progressive frames as shown in Figure 3-3 for NTSC vid-
eo and Figure 3-4 for PAL video. The interfaces uses normal 656 timing. Instead of alternating
interlaced fields, the top half of the frames are alternated with the bottom half of the frames.

Figure 3-3 NTSC Progressive Video

Top Half of Frame

Bottom Half of Frame

52
5

Li
ne

s

H
or

iz
on

ta
l B

la
nk

in
g

H
or

iz
on

ta
l B

la
nk

in
g

Top Half of Frame

Vertical Blanking

Bottom Half of Frame

Video Frame

858

EAV
SAV

720

240

240

Line 21

Line 283

138 720

480
52 | Mobilygen Corp Confidential

Video Interface Video Interface Usage
Figure 3-4 PAL Progressive Video

Top Half of Frame

Bottom Half of Frame

52
5

Li
ne

s

H
or

iz
on

ta
l B

la
nk

in
g

H
or

iz
on

ta
l B

la
nk

in
g

Top Half of Frame

Vertical Blanking

Bottom Half of Frame

Video Frame

858

EAV
SAV

720

288

288

Line 23

Line 336

138 720

576
Confidential Mobilygen Corp. | 53

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
When the MG1264 Codec needs to reduce the number of horizontal pixels. For example, to sup-
port VGA input to 640 horizontal pixels (as shown in Figure 3-5), it discards pixels on the right-
hand side of the frame. In the example shown in Figure 3-5, 80 pixels are discarded.

Figure 3-5 640 x 480 Progressive Video

Top Half of Frame

Bottom Half of Frame

52
5

Li
ne

s

H
or

iz
on

ta
l B

la
nk

in
g

H
or

iz
on

ta
l B

la
nk

in
g

Top Half of Frame

Vertical Blanking

Bottom Half of Frame

Video Frame

858

EAV
SAV

640

240

240

Line 21

Line 283

138

480�
�

�
�

640 80
54 | Mobilygen Corp Confidential

Video Interface Video Interface Usage
3.1.3 Progressive Video Interface for 800x600 (SVGA) and 768x576.

Because 800x600 and 768x576 video have resolutions that are higher than the standard active
region video stream, the MG1264 Codec slightly modifies the timing scheme and uses portions
of the blanking region to fit the image. 800x600 video uses the PAL framing because PAL has
a high enough resolution to accommodate the 800x600. 800x600 video is limited to a 25 frame
per second rate. Figure 3-6 shows the framing for an 800x600 frame.

The MG1264 Codec uses a similar video timing for 768x576 video. Alternately, it can use the
exact same video timing as 800x600 and crop the unused portions.

Figure 3-6 800 x 600 (SVGA) Progressive Video

Top Half of Frame

Bottom Half of Frame

62
5

Li
ne

s

H
or

iz
on

ta
l B

la
nk

in
g

H
or

iz
on

ta
l B

la
nk

in
g

Top Half of Frame

Vertical Blanking

Bottom Half of Frame

Video Frame

858

EAV
SAV

800

300

300

Line 12

Line 325

58 800

600
Confidential Mobilygen Corp. | 55

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
3.2 Video Interface Signals
This section describes the signals used to interface the MG1264 Codec into a system. Table 3-2
shows the signals and Figure 3-7 shows the connections.

Figure 3-7 Video Interface Connections

3.3 Video Interface Timing
The video interface is 656 in nature, and the signal pins consist of a video clock (VID_CLK)
and video data (VID_DATA) as shown in Figure 3-8. The data is either the timing code (EAV/
SAV) or the actual video data. The timing for the interface is specified in the 656 Interface Spec-
ification.

Figure 3-8 Video Interface Timing

Table 3-2 Video Interface Signals

SIGNAL Dir # Bits Description

VID_CLK IO 1 Video Clock, primarily used when the MG1264 Codec is slaved to the
Video Clock. Optionally, the MG1264 Codec can master the Video
Clock.

VID_DATA[7:0] IO 8 Video Data: This bus is an input when the MG1264 Codec is sinking
the video data (encoding), and an output when the MG1264 Codec is
sourcing the video data (decoding).

VIDOUT_DATA[7:0] O 8 Video Output Data in development only

MG1264 Coprocessor

VID_CLK

VID_DATA[7:0]

VIDOUT_DATA[7:0]

27 MHz

VID_CLK

VID_DATA
56 | Mobilygen Corp Confidential

Chapter 4. SDRAM Interface
The MG1264 Low Power H.264 and AAC Codec for Mobile Devices requires one 8 Meg
x 16 SDRAM, and supports both regular SDRAMs with a 3.3V interface or Mobile
SDRAMs with a 2.5V interface. We believe that most customers will use Mobile SDRAM
because they are packaged in a fine-pitched BGA suitable for mobile designs. Another rea-
son is that an equivalent 3.3V Mobile SDRAM draws less power than an equivalent 3.3V
normal SDRAM.

The option of 2.5V volt support is very important to some customers. It offers tremendous
system power savings. In the Field Encode mode, the saving are >100 mW, including the
MG1264 Codec DRAM IO and the DRAM part itself.

4.1 The SDRAM Interface
The MG1264 Codec connects to the SDRAM as shown in Figure 4-1. Table 4-1 lists the
connections and describes their functions.

Table 4-1 DRAM Interface Signal List

SIGNAL Dir # Bits Description

SD_CLK O 1 SDRAM Clock. This signal provides the clock to the SDRAM.

SD_DQ[15:0] IO 16 SDRAM Data. These signals are the 16-bit data port between the
SDRAM and the MG1264 Codec.

SD_ADDR[12:0] O 13 SDRAM Address. This bus provides the multiplexed row and column ad-
dress information to the SDRAM.

SD_BA[1:0] O 2 SDRAM Bank Address. These lines select the bank that is being ad-
dressed within the DRAM.

SD_DQM[1:0] O 2 SDRAM Data Mask. These bits provide a byte-mask signal for data be-
ing written to the DDR SDRAM. Two MDQM bits are provided to mask
the lower and upper bytes of 16-bit wide SDRAMs. In a typical system
SD_DQM[0] is connected to LDQM and SD_DQM[1] is connected to
UDQM on 16-bit wide SDRAMs.
Confidential Mobilygen Corp. | 57

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Figure 4-1 MG1264 Codec SDRAM Interface

SD_CKE O 1 SDRAM Clock Enable. This signal is the Clock Enable Output for the
DRAMs.

SD_CS O 1 SDRAM Chip Select

SD_RAS O 1 SDRAM RAS. This signal is the row access strobe to the SDRAM.

SD_CAS O 1 SDRAM CAS. This signal is the column access strobe to the SDRAM.

SD_WE O 1 SDRAM Write Enable

Table 4-1 DRAM Interface Signal List

SIGNAL Dir # Bits Description

MG1264 Coprocessor Mobile SDRAM

SD_DQ[15:0]

SD_ADDR[12:0]

SD_BA[1:0]

SD_DQM1
SD_DQM0

SD_CLK

SD_CKE

SD_CS

SD_RAS

SD_CAS

SD_WE

DQ[15:0]

A[12:0]

BA[1:0]

UDQM
LDQM

CLK

CKE

CS

RAS

CAS

WE
58 | Mobilygen Corp Confidential

SDRAM Interface Mobile SDRAM Features
4.2 Mobile SDRAM Features
Features that are implemented in the Mobile SDRAM that are not in the normal SDRAM in-
clude:

• Support for 3.3, 2.5, and 1.8 Voltage Operation (Core and I/O)

• Temperature Compensated Self-Refresh

• Partial Array Self Refresh

• Deep Power Down

• Drive Strength Control

4.2.1 Voltage Operation (3.3V, 2.5V, 1.8V)

The main benefit that the MG1264 Codec will get from the Mobile SDRAM is low-voltage op-
eration. While Normal SDRAMs are limited to 3.3V, Mobile SDRAMs allow for the option of
supporting 2.5V and 1.8V. The MG1264 Codec supports both the 3.3V and 2.5V options.

4.2.2 Temperature Compensated Self-Refresh

Mobile SDRAMs have a mechanism for saving self-refresh power based upon the operating
temperature. The Controller enables this mechanism by programming the External Mode Reg-
ister (EMR) bits A4 and A3. The Controller must have an external temperature sensor to know
the value to program into the EMR.

4.2.3 Deep Power Down

The MG1264 Codec does not use a DPD mode. Instead, the MG1264 Codec uses an external
Voltage Regulator to switch the power completely off to the SDRAM.

4.2.4 Drive Strength Control

Mobile SDRAMs are typically designed assuming a 30 pF load with a risetime and/or falltime
target of 1 nS. However, two bits exist within the Extended Mode Register of the DRAM that
allow for control of the Drive Strength (DS) to tailor it to lower loading scenarios.
Confidential Mobilygen Corp. | 59

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
60 | Mobilygen Corp Confidential

Chapter 5. Audio Interface
5.1 Audio Interface Overview
The audio interface on the MG1264 Codec is responsible for receiving a PCM audio stream
from an audio Analog-to Digital convertor in either left-justified mode or as an I2S audio
Slave device. It then writes the audio samples to the external memory via the memory sub-
system. This module can support one or two channels (left and right) per sample.

The MG1264 Codec accepts input audio for AAC compression and generates output audio
from decompressed AAC bitstreams. It accepts audio sample rates (fs or AUD_LRCK) of
48 kHz, 44.1 kHz, 32 kHz, 24, kHz, and 22.05 kHz.

The MG1264 Codec encodes two-channel AAC audio encoding with 16-bit samples at both
32 kHz and 48 kHz sample rates. The target audio bitrate is 10% of the associated video
bitrate, with an appropriate sample rate.

User Control of the AAC Encoder Features

The audio encoder features are selectable. Each feature has settings and/or ranges that af-
fect the overall compression efficiency accordingly. Table 5-1 shows the key features and
their associated target settings.

Table 5-1 AAC Encoder Features

Feature Options

Channels Mono (1) or Stereo (2)

Sample rate 22.05 kHz,24, kHz, 32 kHz, 44.1 kHz, or 48 kHz

Bitrate 8 kbps - 384 kbps
Confidential Mobilygen Corp. | 61

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
5.2 Audio Interface Signals
The audio interface is a modification of the inter-IC sound (I2S) bus; a serial link especially for
digital audio. To minimize the number of pins required and to keep wiring simple, a four-line
serial bus is used. The signals consist of an input for two time-multiplexed data channels, an
output for two time-multiplexed data channels, a word select line, and a clock line. These sig-
nals are shown in Table 5-2.

Since the MG1264 Codec is an audio Slave, the clocks have to be supplied by either the System
Host CPU (refer to Figure 5-1) or the audio DAC/ADC (refer to Figure 5-2).

Figure 5-1 Audio Interface Connections with the System Host CPU as the Audio Clock
Master

Table 5-2 Audio Interface Signal List

SIGNAL Dir # Bits Description

AUD_CLK IO 1 Audio Oversample Clock, 256 fs (LRCK)

AUD_BCK IO 1 Audio Bit Clock, 32 or 64 fs (LRCK)

AUD_LRCK IO 1 Audio Left/Right Clock (48, 44.1, 32, 24, 22.05 kHz)

AUD_IDAT I 1 Audio Serial Input Data

AUD_ODAT O 1 Audio Serial Output Data

System
Host
CPU

MG1264
Codec

Audio
DAC/ADC

AMCK

ALRCK

ABCK

AIDATA

AODATA

AUD_CLK

AUD_LRCK

AUD_BCK

AUD_IDAT

AUD_ODAT
62 | Mobilygen Corp Confidential

Audio Interface I2S Audio Waveforms
Figure 5-2 Audio Interface Connections with the DAC/ADC as the Audio Clock Master

5.3 I2S Audio Waveforms
A sample waveform for I2S audio is shown in Figure 5-3. Note that AUD_LRCK (Left Right
Clock) changes one clock before the MSB is transmitted. This allows the slave transmitter to
derive synchronous timing for the serial data that will be set up for transmission. It also allows
the receiver to store the previous word and clear the input for the next word.

• LRCK = 0; channel 0 (left)

• LRCK = 1; channel 1 (right)

Figure 5-3 I2S Left-justified Audio Waveform

System
Host
CPU

MG1264
Codec

Audio
DAC/ADC

AMCK

ALRCK

ABCK

AIDATA

AODATA

AUD_CLK

AUD_LRCK

AUD_BCK

AUD_IDAT

AUD_ODAT

AUD_CLK

AUD_LRCK

AUD_IDAT LSB MSB LSB MSB

Word n-1
Right Channel

Word n
Left Channel

Word n+1
Right Channel
Confidential Mobilygen Corp. | 63

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
5.4 Left Justified Audio Waveform
A sample waveform for Left Justified audio shown in Figure 5-4. Note that AUD_LRCK (Left
Right Clock) changes on the same cycle as when the MSB is transmitted.

• LRCK = 1; channel 0 (left)

• LRCK = 0; channel 1 (right)

Figure 5-4 Left-justified Audio Waveform

5.5 16, 20, 24, 32-Bit Left Justified Audio Waveform
Sample waveforms for 16, 20, 24, and 32-bit Left Justified audio are shown in Figure 5-5. Note
that AUD_LRCK stays high/low for 32 cycles and AUD_CLK is 64 cycles per channel. The
MSB for each audio sample is aligned with the AUD_LRCK's transition. The Audio Input In-
terface ignores the data bus after the LSB for each sample.

Figure 5-5 16, 20, 24, and 32-Bit Left Justified Audio Waveform

AUD_CLK

AUD_LRCK

AUD_IDAT LSB MSB LSB MSB

Word n-1
Right Channel

Word n
Left Channel

Word n+1
Right Channel

AUD_CLK

AUD_LRCK

16-Bit
AUD_IDAT

20-Bit
AUD_IDAT

24-Bit
AUD_IDAT

32-Bit
AUD_IDAT

Word n-1
Right Channel

MSB

Word n+1
Right Channel

LSB
Ignore data following LSB

Word n
Left Channel
64 | Mobilygen Corp Confidential

Chapter 6. Miscellaneous Signals
There are many signals on the MG1264 Low Power H.264 and AAC Codec for Mobile De-
vices that are not associated with a specific interface. These signals are described in
Table 6-1.

Table 6-1 Miscellaneous Signals

Signal Dir # Bits Description

SOUT O 1 UART Transmit Data

SIN I 1 UART Receive Data

XIN I 1 Clock Input

PLL_AVDD P 1 PLL Analog VDD

PLL_AVSS P 1 PLL Analog VSS

CORE_VDD P 4 Core Logic VDD

CORE_VSS P 4 Core Logic VSS

TCK I 1 Test JTAG Clock

TDI I 1 Test JTAG Data Input

TDO O 1 Test JTAG Data Output

TRST I 1 Test JTAG Reset

TMODE I 1 Test JTAG Mode
Confidential Mobilygen Corp. | 65

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
66 | Mobilygen Corp Confidential

Chapter 7. Programming
7.1 Modes Of Operation
Video compression applications require the user to manually select the mode of operation,
typically video capture and playback. Depending upon the design, the MG1264 Codec does
not need to be powered-on and initialized until the appropriate mode is selected.

7.2 Power-Up and Initialization
The MG1264 Codec is able to power-up and be ready to start encoding or decoding in less
than one second. The System Host CPU is responsible for downloading the boot code to the
MG1264 Codec and then initializing the MG1264 Codec. See “Firmware Loader” on
page 85.

When the MG1264 Codec is actually powered-on and initialized is a design parameter of
the system. It can be either when the system is turned on or when the Video Encode mode
is selected.

7.3 Encode and Decode Mode
When the MG1264 Codec is active, it is ready to start encoding or decoding within one
frame time.
Confidential Mobilygen Corp. | 67

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
68 | Mobilygen Corp Confidential

Chapter 8. Bringing up the
MG1264 Codec
This chapter provides suggestions for bringing up the MG1264 Low Power H.264 and
AAC Codec for Mobile Devices decoder and encoder functions for the first time.

8.1 Decoder Bringup
This section describes the phases needed to bring up the AVC decoder in the MG1264 Co-
dec. The phases are as follows.

1. Send a video elementary bitstream to the decoder that is smaller than the decoder's
bitbuffer and confirm that it decodes.

2: Send a video elementary bitstream to the decoder that is larger than the decoder's
bitbuffer and confirm it decodes. Since the stream is larger than the bitbuffer, this
phase tests the software flow control.

3: Send a “QBOX” video stream to the decoder and confirm that it decodes. A QBOX
video stream is a video elementary stream that has a Mobilygen QBOX header pri-
or to each video access unit. More information about the QBOX is contained
“Phase 3: Decoding A QBOX Stream” on page 76.

8.1.1 Phase 1: Decoding a Small Elementary NAL Video Stream

The goal for this step is to decode a video elementary AVC stream that is smaller than the
MG1264 Codec bitbuffer.

Step 1: Configuring the Bitstream Type

The MG1264 Codec firmware can decode several bitstream formats called BitstreamTypes.
In this part of the bringup we will be using the “video elementary stream.” This type of
stream corresponds to Annex B of the ISO/IEC 14496-10 where there is a startcode preced-
ing each Network Abstraction Layer (NAL) unit. The size of each NAL unit is not located
in the stream and can only be detected by searching for startcodes. Streams encoded by the
MG1264 Codec will have a 32-bit startcode of 0x00000001, although the decoder can also
handle 24 bit startcodes of 0x000001.

The default bitstream type for the MG1264 Codec firmware is the video elementary stream.
This bitstream type can be forcibly selected by sending a configuration command to the
Confidential Mobilygen Corp. | 69

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
video decoder control object. This is done with the following command, which is only valid
when the decoder is in IDLE state.

COMMAND cmd;

cmd.controlObjectId = AVDECODER_CTRLOBJ_ID;
cmd.opcode = Q_CMD_OPCODE_CONFIGURE;
cmd.arguments[0] = Q_AVD_CFG_BITSTREAM_TYPE;
cmd.arguments[1] = Q_AVD_CFP_BITSTREAM_TYPE_ELEM_VIDEO;
cmd.arguments[2] = 0;

Step 2: Configuring the Bitstream Source

The MG1264 Codec firmware can receive bitstream data using three different methods. These
methods are:

• Bitstream push using hardware flow control

• Bitstream pull using software flow control

• Memory pull using software flow control.

The bitstream push method sends data to the bitstream FIFO device in the MG1264 Codec host
interface. This FIFO is internally connected to a MG1264 Codec device called the System Input
Stream Controller (SISC). This datapath has complete hardware flow control in that, if the in-
ternal bitstream buffer is full, the bitstream FIFO on the host interface will assert the WAIT sig-
nal (or de-assert the DMAREQ signal) indicating to the host that no more data can be sent.

In normal playback operation the bitstream buffer will almost always be full, meaning that the
WAIT signal will be asserted for up to 20 ms. until a video frame is decoded. When the decoder
is in the PAUSE state, the WAIT signal will be continuously asserted. If the host system archi-
tecture has a DMA engine that is not shared with other applications and can be blocked for an
indefinite period of time, then this is the best option as it requires no software interaction for
flow control.

The bitstream pull method also sends data to the bitstream FIFO in the host interface, except
that the host is required to send a command to request the size of data that can be safely sent
without filling the bitbuffer. If the host sends less than this amount, then the WAIT signal will
never be asserted for long periods of time (or indefinitely in the case of the pause state).

The memory pull interface is not covered in this document, as either the bitstream push or pull
methods are sufficient for this application.

The bitstream source is set to bitstream push by default. The bitstream source can be forcibly
selected with the following configuration command, which is only valid when the decoder is in
the IDLE state.

COMMAND cmd;

cmd.controlObjectId = AVDECODER_CTRLOBJ_ID;
cmd.opcode = Q_CMD_OPCODE_CONFIGURE;
cmd.arguments[0] = Q_AVD_CFG_BITSTREAM_SOURCE;
cmd.arguments[1] = Q_AVD_CFP_BITSTREAM_SOURCE_SISC_PUSH;
cmd.arguments[2] = 0;

For this phase of the bringup we will use the SISC_PUSH method because the size of the bit-
stream will be smaller than the bitbuffer.
70 | Mobilygen Corp Confidential

Bringing up the MG1264 Codec Decoder Bringup
Step 3: Putting the Decoder into the PLAY State

The decoder must be placed into the PLAY state before any streaming is done. The host must
ensure that the PLAY command returns with the COMMAND_DONE interrupt before stream-
ing otherwise some data at the start of the stream could be lost.

The decoder is put into the PLAY state with the following command.

COMMAND cmd;

cmd.controlObjectId = AVDECODER_CTRLOBJ_ID;
cmd.opcode = Q_CMD_OPCODE_CONFIGURE;
cmd.arguments[0] = Q_AVD_CFG_BITSTREAM_TYPE;
cmd.arguments[1] = Q_AVD_CFP_BITSTREAM_TYPE_ELEM_VIDEO;
cmd.arguments[2] = 0;

Step 4: Streaming the Bitstream

Sending the bitstream is done using the QHAL bitstream (bs) module. Because the bitstream
contains startcodes and there is no parsing or demultiplexing required on the host, the host can
simply read the bitstream in fixed sized blocks and send them to the host interface one at a time.
The only restriction is that the transfer size must be 4-byte aligned.

Here is sample code that can be used to send data.

#include <stdio.h>
#include <errno.h>
#include "qhal_bs.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

#define NDATAPERTX (256*1024) // transfer in 256k byte chunks

char buf[NDATAPERTX];

int main(int argc,char *argv[])
{ int fd;
 qhalbs_handle_t handle;
 int err,ntx;

 switch(argc)
 { case 1:
 fd=0;
 break;
 case 2:
 fd=open(argv[1],O_RDONLY);
 break;
 default:
 fprintf(stderr,"Error: too many arguments, syntax is %s
[<file>]\n",argv[0]);
 return -1;
 };
 if(fd<0)
 { perror("Error");
 return errno;
Confidential Mobilygen Corp. | 71

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
 };
 handle=qhalbs_open();
 while(1)
 { ntx=read(fd,buf,NDATAPERTX);
 if(ntx==0) break;
 if(ntx<0)
 { perror("Error");
 return errno;
 };
 if((ntx%4) && (ntx>4))
 { lseek(fd,-(ntx%4),SEEK_CUR);
 ntx-=ntx%4;
 } else if(ntx%4)
 { bzero(buf+ntx,4-ntx%4);
 ntx+=4-ntx%4;
 };
 if((err=qhalbs_write(handle,buf,ntx))<0)
 { fprintf(stderr,"Error: qhal returned error %d\n",err);
 return err;
 };
 };
}

Decoding and presentation should begin shortly after streaming has started.

Note that this code adds padding to the buffer if it is not a multiple of four bytes. It relies on the
fact that this will only happen at the end of the file, since the read function always returns the
number of bytes requested if there are that many left (or more) in the file. Also, this code has
no checks for flow control. This is added in the next phase.

It is important to understand the endian-ness of the AVC bitstream and how it affects streaming.
The AVC stream is big-endian and should be read as a byte stream into an internal buffer and
then sent to MG1264 Codec. Little endian hosts need to be aware of this and not swap bytes
when reading into the internal buffer.
72 | Mobilygen Corp Confidential

Bringing up the MG1264 Codec Decoder Bringup
8.1.2 Phase 2: Decoding a Large Elementary NAL Video Stream with Software Flow Control

The goal for this phase is to decode a bitstream that is larger than the size of the internal bit
buffer. If the host can use the PUSH method, then sending a large file is exactly the same as
sending a small one because the hardware takes care of the flow control. The data streaming
code from the previous section continues to work as the qhalbs_write function will block
until the streaming operation is complete. Assuming that streaming is done in a separate thread,
then the system will continue to run.

If the host uses the PULL method, meaning that it cannot have the DMA operations stall for
indefinite periods of time, then the following steps should be followed. The key section is in
streaming where we introduce software flow control.

Step 1: Setting the Bitstream Type

This step is the same as “Step 1: Setting the Bitstream Type” on page 73.

Step 2: Configuring the Bitstream Source

We have to set the bitstream source to PULL because of the software flow control. This is done
using the following configure command, which is only valid when the decoder is in the IDLE
state.

COMMAND cmd;

cmd.controlObjectId = AVDECODER_CTRLOBJ_ID;
cmd.opcode = Q_CMD_OPCODE_CONFIGURE;
cmd.arguments[0] = Q_AVD_CFG_BITSTREAM_SOURCE;
cmd.arguments[1] = Q_AVD_CFP_BITSTREAM_SOURCE_SISC_PULL;
cmd.arguments[2] = 0;

Step 3: Putting the Decoder into the PLAY State

This step is the same as “Step 3: Putting the Decoder into the PLAY State” on page 71.

Step 4: Streaming the Bitstream

Software flow control is achieved by sending a command to MG1264 Codec that returns the
number of bytes remaining in the bit buffer. The host must ensure that it does not send more
than this amount of data before it asks again how much data is available. The command to ob-
tain how much data remains is shown here.

COMMAND cmd;

cmd.controlObjectId = AVDECODER_CTRLOBJ_ID;
cmd.opcode = Q_AVD_CMD_NEXT_BS_SIZE;

The MG1264 Codec firmware returns the number of bytes free in the return values section of
the command.

cmd.returnValues[0];

Here is sample code that can be used to send data. The code reads the amount of space left in
the bit buffer and continuously transfers data in blocks until it has no space left. It then re-reads
the amount of space left and waits until the space left is greater than the block size.
Confidential Mobilygen Corp. | 73

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
#include <stdio.h>
#include <errno.h>
#include "qhal_bs.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

#define NDATAPERTX (256*1024)

char buf[NDATAPERTX];

int main(int argc,char *argv[])
{ int fd;
 qhalbs_handle_t handle;
 int err,ntx;
 int i;
 int space;
 int pendingXfer;

 switch(argc)
 { case 1:
 fd=0;
 break;
 case 2:
 fd=open(argv[1],O_RDONLY);
 break;
 default:
 fprintf(stderr,"Error: too many arguments, syntax is %s
[<file>]\n",argv[0]);
 return -1;
 };
 if(fd<0)
 { perror("Error");
 return errno;
 };
 handle=qhalbs_open();

 // initialization
 pendingXfer = 0;
 ntx = 1;

 while(ntx != 0)
 {

 space = readnumleft(); // - host implements command to read data left

 while (ntx != 0)
 {

 // read one buffer
 if (pendingXfer == 0)
 {
 ntx=read(fd,buf,NDATAPERTX);
 }
74 | Mobilygen Corp Confidential

Bringing up the MG1264 Codec Decoder Bringup

 if (ntx+4 > space)
 {
 pendingXfer = 1;
 break;
 }

 if (ntx != 0)
 {
 if((ntx%4) && (ntx>4))
 {
 lseek(fd,-(ntx%4),SEEK_CUR);
 ntx-=ntx%4;
 }
 else if(ntx%4)
 {
 bzero(buf+ntx,4-ntx%4);
 ntx+=4-ntx%4;
 }
 }

 if((err=qhalbs_write(handle,buf,ntx))<0)
 {
 fprintf(stderr,"Error: qhal returned error %d\n",err);
 return err;
 }

 space -= ntx;
 pendingXfer = 0;
 }

 // sleep 15 ms
 sleep(); // -- host specific
 }

}

Confidential Mobilygen Corp. | 75

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
8.1.3 Phase 3: Decoding A QBOX Stream

A QBOX is a Mobilygen proprietary header that includes information about the data it contains,
specifically audio or video compressed streams. For example, a flag in the header indicates if
the contained data is audio or video data. It is expected that if the host does MP4 multiplexing
and demultiplexing then it will stream QBOX data to the MG1264 Codec for decoding.

The QBOX header is as follows.

typedef struct {
 uint32_t box_size;
 uint32_t box_type; // "qbox"
 uint32_t box_flags; // (version << 24 | box_flags)
 uint16_t sample_stream_type;
 uint16_t sample_stream_id;
 uint32_t sample_flags;
 uint32_t sample_cts;
 uint8_t sample_data[];
} QBox;

sample_stream_type is set to 0x0001 for AAC audio, and 0x0002 for AVC video.

sample_stream_id is currently set to the same value as sample_stream_type.

box_flags has two flags. Bit 0 is set if there is sample data after the header and bit 1 is set if
this is the last sample in the stream.

sample_flags is currently unimplemented.

This 24-byte structure is at the start of each bitstream block when the system has the stream type
of QBOX. Additionally, when in QBOX mode, startcodes are not used and instead the AVC bit-
stream follows part 15 of ISO/IEC-14496 (AVC File Format). The net effect of this mode com-
pared to the previous mode is that the length of the following NAL unit replaces the 4-byte start
code of 0x00000001.

The first QBOX sent by the MG1264 Codec when encoding, and the first QBOX that is expect-
ed to be received when decoding, contains two NAL units, one with the sequence parameter set
and the other with the picture parameter set. Subsequent QBOX's contain one NAL unit with
a single AVC access unit.

For example, here is the first QBOX header of AVC video:

0000002D Size of QBOX is 2D bytes including the size field.
71626F78 "qbox" in ASCII
00000001 Sample data is present
00020002 AVC video
00000000 sample flags
00000000 sample CTS (not implemented yet)

The next data set is the sequence parameter set proceeded by the NAL unit size. For example:

00000009 NAL size (not including this field)
6742E01E Sequence parameter data
DA02D0F4 Sequence parameter data
40 Sequence parameter data
00000004 NAL size
68CE3E80 Picture parameter data

Totalling all of the data bytes gives 0x2D which is the size of the QBOX given at the beginning.
76 | Mobilygen Corp Confidential

Bringing up the MG1264 Codec Decoder Bringup
Step 1: Setting the Bitstream Type

This step is the same as “Step 1: Setting the Bitstream Type” on page 73.

The default bitstream type for the MG1264 Codec firmware is the video elementary stream. In
order to use QBOX we must switch the type to QBOX. This must be done only once for the
decoder at startup (it must be done for the encoder at startup as well).

This is done with the following command, which is only valid when the decoder is in IDLE
state.

COMMAND cmd;

cmd.controlObjectId = AVDECODER_CTRLOBJ_ID;
cmd.opcode = Q_CMD_OPCODE_CONFIGURE;
cmd.arguments[0] = Q_AVD_CFG_BITSTREAM_TYPE;
cmd.arguments[1] = Q_AVD_CFP_BITSTREAM_TYPE_QBOX;
cmd.arguments[2] = 0;

Step 2: Configuring the Bitstream Source

There are no additional requirements that QBOX streaming put on the bitstream source. If the
host is using PUSH, then push should be used here; if the host is using PULL then it should be
used here as well.

Step 3: Putting the Decoder into the PLAY State

This step is the same as “Step 3: Putting the Decoder into the PLAY State” on page 73.

Step 4: Streaming the Bitstream

If the stored bitstream consists of QBOXes, then the streaming is done exactly the same as in
the previous phases. A QBOX stream is available to test this mode. Contact your Mobilygen
sales representative for a copy.

However, it is likely that the bitstream will be stored in an MP4 file, and the host must convert
it to QBOX format on the fly. This operation is quite simple and involves prepending the 24-
byte QBOX header to the bitstream data (and possibly updating the size of the NAL unit as
well).
Confidential Mobilygen Corp. | 77

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
8.2 Encoder Bringup
This section describes the phases needed to bringup the AVC encoder in the MG1264 Codec.
The phases are as follows.

1. Record a video elementary bitstream which is smaller than the encoder's bitbuffer and
confirm that it decodes.

2: Record a video elementary bitstream which is larger than the encoder's bitbuffer and
confirm it decodes. Since the stream is larger than the bitbuffer this tests the software
flow control.

3: Record a "QBOX" video stream and confirm it decodes. A qbox video stream is a vid-
eo elementary stream that has a Mobilygen QBOX header prior to each video access
unit. More information about the QBOX is contained in this document.

8.2.1 Phase 1: Recording a Small Elementary NAL Video Stream

The goal for this step is the decoding of a video elementary AVC stream that is smaller than the
MG1264 Codec bitbuffer.

Step 1: Configuring the Bitstream Type

The MG1264 Codec firmware can decode several bitstream formats called BitstreamTypes. In
this part of the bringup we will be using the “video elementary stream.” This type of stream
corresponds to Annex B of the ISO/IEC 14496-10 where there is a startcode preceding each
Network Abstraction Layer (NAL) unit. The size of each NAL unit is not located in the stream
and can only be detected by searching for startcodes. Streams encoded by the MG1264 Codec
will have a 32-bit startcode of 0x00000001, although the decoder can also handle 24-bit start-
codes of 0x000001.

The default bitstream type for the MG1264 Codec firmware is the video elementary stream.
This bitstream type can be forcibly selected by sending a configuration command to the video
encoder control object. This is done with the following command, which is only valid when the
encoder is in IDLE state.

COMMAND cmd;

cmd.controlObjectId = AVENCODER_CTRLOBJ_ID;
cmd.opcode = Q_CMD_OPCODE_CONFIGURE;
cmd.arguments[0] = Q_AVE_CFG_BITSTREAM_TYPE;
cmd.arguments[1] = Q_AVE_CFP_BITSTREAM_TYPE_ELEM_VIDEO;
cmd.arguments[2] = 0;

Step 2: Subscribing to the BITSTREAM_BLOCK_READY Event

The MG1264 Codec firmware sends BITSTREAM_BLOCK_READY events to the host to in-
dicate that there is new data to store. These events must first be subscribed. This subscription
must be done only once at startup.

Subscription is done through the following command.

COMMAND cmd;

cmd.controlObjectId = AVENCODER_CTRLOBJ_ID;
cmd.opcode = Q_CMD_OPCODE_SUBSCRIBE_EVENT;
cmd.arguments[0] = Q_AVE_EV_BITSTREAM_BLOCK_READY
cmd.arguments[2] = 0;
78 | Mobilygen Corp Confidential

Bringing up the MG1264 Codec Encoder Bringup
Step 3: Putting the Encoder into the RECORD state

The encoder must be placed into the RECORD state. The encoder is put into the RECORD state
with the following command.

COMMAND cmd;

cmd.controlObjectId = AVENCODER_CTRLOBJ_ID;
cmd.opcode = Q_AVE_CMD_OPCODE_RECORD;
cmd.arguments[0] = 0;

Step 4: Receiving the Bitstream

Receiving the bitstream is done by processing the bitstream block ready events. The AV encod-
er generates bitstream block ready events each time enough data has been accumulated in its
internal bit buffers.

The structure of a generic event is as follows:

typedef struct
{
 CONTROLOBJECT_ID controlObjectId;
 EVENT_ID eventId;
 unsigned int timestamp;
 unsigned int payload[MAX_EVENT_PAYLOAD];
} EVENT;

The timestamp field is measured in microseconds. The timestamp corresponds to the PTS of
the access unit in the event (if an access unit is present).

The bitstream block ready has specific meanings assigned to the payload fields. Up to 5 blocks
of data can be sent in a single event. The structure of the bitstream block ready events follows.

typedef struct
{
 CONTROLOBJECT_ID controlObjectId;
 EVENT_ID eventId;
 unsigned int timestamp;
 unsigned int numAndType;
 unsigned int reserved0;
 unsigned int reserved1;
 unsigned int Addr0;
 unsigned int Size0;
 unsigned int Addr1;
 unsigned int Size1;
 unsigned int Addr2;
 unsigned int Size2;
 unsigned int Addr3;
 unsigned int Size3;
 unsigned int Addr4;
 unsigned int Size4;
} STRUCT_Q_AVE_EV_BITSTREAM_BLOCK_READY;

The field numAndType contains information about the data in the event. The lower 16-bits of
this field contains the number of data blocks, which will be either 1 - 5. The upper 16-bits con-
tains one 3-bit field per access unit that describes its content. Access unit 0's information is
stored in bits 16-18, access unit 1 in 19-21 etc. The following values are currently allocated:
Confidential Mobilygen Corp. | 79

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
1: AVC Video Elementary Stream

2: QBox

In this phase, the encoder is creating AVC video elementary streams, so the value of this field
will be (for example, if five blocks are sent per event) 0x12490005.

The bitstream should be read using the qhalem_read_bytes() method using a block Id of
64 with the address and data from the event.

Because the bitstream blocks are not being acknowledged by the host, the bitstream events will
stop arriving once the video bit buffer is full.

Step 5: Decoding the Bitstream

Once stored, this bitstream should decode. Follow the steps in the decoder bringup of small vid-
eo elementary streams to check.

8.2.2 Phase 2: Recording a Large Elementary NAL Video Stream with Software Flow Control

The goal for this phase is to record a bitstream that is larger than the size of the internal bit buff-
er. This is done by the host acknowledging buffers that it has read from, and that can be reused
by the encoder.

Step 1: Configuring the Bitstream Type

This step is the same as “Step 1: Configuring the Bitstream Type” on page 78.

Step 2: Putting the Encoder into the RECORD State

This step is the same as “Step 3: Putting the Encoder into the RECORD state” on page 79.

Step 3: Receiving the bitstream

Software flow control is achieved by having the host send a command to the MG1264 Codec
that contains the same information as the event it just processed. That is, once the host has read
all the data that the event contains (one to five data blocks), then it sends the
BITSTREAM_BLOCK_DONE command. Note that since the maximum number of arguments in a
command is six, the host might have to send two commands. The list of blocks that are ac-
knowledged is done by setting the address to zero.

COMMAND cmd;

cmd.controlObjectId = AVENCODER_CTRLOBJ_ID;
cmd.opcode = Q_AVD_CMD_BITSTREAM_BLOCK_DONE;
cmd.arguments[0] = Addr0;
cmd.arguments[1] = Size0;
cmd.arguments[2] = Addr1;
cmd.arguments[3] = Size1;
cmd.arguments[4] = Addr2;
cmd.arguments[5] = Size2;

COMMAND cmd;

cmd.controlObjectId = AVENCODER_CTRLOBJ_ID;
cmd.opcode = Q_AVD_CMD_BITSTREAM_BLOCK_DONE;
cmd.arguments[0] = Addr3;
80 | Mobilygen Corp Confidential

Bringing up the MG1264 Codec Encoder Bringup
cmd.arguments[1] = Size3;
cmd.arguments[2] = Addr4;
cmd.arguments[3] = Size4;
cmd.arguments[4] = 0;

Step 4: Stopping Recording

Stopping the recording is done with the FLUSH command. The following command performs
this operation.

COMMAND cmd;

cmd.controlObjectId = AVENCODER_CTRLOBJ_ID;
cmd.opcode = Q_AVD_CMD_FLUSH;
cmd.arguments[0] = 0;

8.2.3 Phase 3: Recording a QBOX Stream

A QBOX is a Mobilygen proprietary header that contains information about its contained data,
specifically audio or video compressed streams. For example, a flag in the header indicates if
the contained data is audio or video data. It is expected that if the host does MP4 multiplexing
and demultiplexing, then it will stream QBOX data to the MG1264 Codec for decode.

The QBOX header is as follows.

typedef struct {
 uint32_t box_size;
 uint32_t box_type; // "qbox"
 uint32_t box_flags; // (version << 24 | box_flags)
 uint16_t sample_stream_type;
 uint16_t sample_stream_id;
 uint32_t sample_flags;
 uint32_t sample_cts;
 uint8_t sample_data[];
} QBox;

sample_stream_type is set to 0x0001 for AAC audio, and 0x0002 for AVC video.

sample_stream_id is currently set to the same value as sample_stream_type.

box_flags has two flags. Bit 0 is set if there is sample data after the header and bit 1 is set if
this is the last sample in the stream.

sample_flags has three flags. Bit 0 indicates whether configuration information is contained
in the sample. Bit 1 indicates if CTS is meaningful, bit 2 indicates if this is a sync point
(I-frame).

This 24-byte structure is at the start of each bitstream block when the system has the stream type
of QBOX. Additionally, when in QBOX mode, startcodes are not used and the AVC bitstream
follows part 15 of ISO/IEC-14496 (AVC File Format) instead. The net effect of this mode com-
pared to the previous mode is that the length of the following NAL unit replaces the 4-byte start
code of 0x00000001.

The first QBOX sent by the MG1264 Codec when encoding, and the first QBOX that is expect-
ed to be received when decoding, contains two NAL units, one with the sequence parameter set
and the other with the picture parameter set. Subsequent QBOX's contain one NAL unit with
a single AVC access unit.
Confidential Mobilygen Corp. | 81

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
For example, here is the first QBOX header of AVC video.

0000002D Size of QBOX is 2D bytes including the size field.
71626F78 "qbox" in ASCII
00000001 Sample data is present
00020002 AVC video
00000000 sample flags
00000000 sample CTS (not implemented yet)

The next data set is the sequence parameter set preceded by the NAL unit size. For example

00000009 NAL size (not including this field)
6742E01E Sequence parameter data
DA02D0F4 Sequence parameter data
40 Sequence parameter data
00000004 NAL size
68CE3E80 Picture parameter data

Totalling all of the data bytes gives 0x2D which is the size of the QBOX given at the beginning.

Step 1: Configuring the Bitstream Type

This step is the same as “Step 1: Configuring the Bitstream Type” on page 78.

The default bitstream type for the MG1264 Codec firmware is the video elementary stream. In
order to use QBOX, we must switch the type to QBOX. This must be done only once for the
encoder at startup (it must be done for the decoder at startup as well).

This is done with the following command, which is only valid when the encoder is in IDLE
state.

COMMAND cmd;

cmd.controlObjectId = AVENCODER_CTRLOBJ_ID;
cmd.opcode = Q_CMD_OPCODE_CONFIGURE;
cmd.arguments[0] = Q_AVE_CFG_BITSTREAM_TYPE;
cmd.arguments[1] = Q_AVE_CFP_BITSTREAM_TYPE_QBOX;
cmd.arguments[2] = 0;

Step 2: Putting the Encoder into the RECORD State

This step is the same as “Step 3: Putting the Encoder into the RECORD state” on page 79.

Step 4: Storing the bitstream

Handling the bitstream block ready events is done the same as in the previous phase except that
the QBOX header should be examined for the timestamp (CTS) and sample flags to help the
host multiplexer.

Step 5: Stopping the bitstream

Stopping the recording is done with the FLUSH command. The following command performs
this operation.

COMMAND cmd;

cmd.controlObjectId = AVENCODER_CTRLOBJ_ID;
cmd.opcode = Q_AVD_CMD_FLUSH;
cmd.arguments[0] = 0;
82 | Mobilygen Corp Confidential

Bringing up the MG1264 Codec Encoder Bringup
However, the key difference in QBOX recording is that the firmware will continue to send the
buffered bitstream until the host receives the QBOX that has the last sample in stream (bit 1 of
box_flags).
Confidential Mobilygen Corp. | 83

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
84 | Mobilygen Corp Confidential

Chapter 9. Firmware Loader
The MG1264 Low Power H.264 and AAC Codec for Mobile Devices contains a propri-
etary media processor that controls all of operations of the MG1264 Codec, as well as ex-
ecuting the Application programmers Interface. Because the MG1264 Codec has no non-
volatile storage attached (such as Flash or ROM), the System Host CPU must initialize the
MG1264 Codec. This initialization process involves

• Resetting the MG1264 Codec

• Writing a set of internal MG1264 Codec registers (called Configuration/Status Reg-
isters, or CSR registers)

• Downloading the firmware to the MG1264 Codec DRAM, and

• Writing a second set of MG1264 Codec CSR registers.

The first set of register writes initializes hardware modules such as the memory controller.
The second set of register writes starts the media processor's execution.

All of the information required to initialize the MG1264 Codec firmware is contained in a
binary file provided by Mobilygen. This binary file is referred to as the “Firmware Image”.
This chapter describes the format of the binary image and how to read it.

It is important to note that the binary image is stored in a little endian format. Big-endian
System Host CPUs will likely have to byte-reverse the image before storing it in their own
Flash memory.
Confidential Mobilygen Corp. | 85

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
9.1 Firmware Image Format
The binary firmware image provided by Mobilygen starts with a header and then one or more
sections in sequence. Each section consists of a 32-bit word that contains the section ID, fol-
lowed by a variable number of 32-bit words. All fields in each section are always 32-bit words
to make parsing easier. These fields are in little endian format and can be converted to big en-
dian by reversing the four bytes in the 32-bit word (byte 3 switches with byte 0, byte 2 switches
with byte 1, byte 1 switches with byte 2, byte 0 switches with byte 3.).

Note: The System Host CPU should read and process each section in order.

9.1.1 Header

The Header of the binary image contains two 32-bit words. The first word contains the charac-
ters “MBY0” and the second word contains the firmware version. The first three bytes are the
version number and the last byte is the product code. For example, if the version field is
0x010204AA, then the version is 1.2.4, with the product code AA:

unsigned char[4] header = “MBY0”;
unsigned int32 version;

9.1.2 Global Pointer Block

The GPB section contains a single word whose value is the address of the “Global Pointer
Block” for the firmware image. The Global Pointer Block is a structure that contains the address
of the command block, the current event address, and status areas for the encoder, decoder, and
system control. The address of this block can change between firmware builds. Therefore the
System Host CPU must obtain the current Global Pointer Block address by parsing the firm-
ware binary image.

The structure of the Global Pointer Block contains two 32-bit words. The first word is the sec-
tion ID and has a value of four. The second 32-bit word is the Global Pointer Block.

unsigned int32 sectionId = 4;
unsigned int32 globalPointerBlockAddress;

In order to process this section, the System Host CPU must read and locally store the value of
the Global Pointer Block address.

9.1.3 Pre-download CSR

There are two Configuration/Status Register sections in the binary image. The first CSR section
is referred to as the “Pre-download” section and it is executed before downloading the firm-
ware. The second CSR section is referred to as the “Post-download” section, and it is executed
after downloading the firmware. Each CSR section has the same format; they are different only
in their position in the file. As is expected, the Pre-download CSR section comes before the
firmware download sections, and the Post-download CSR section comes after the firmware
download sections.

The structure of the CSR section consists of the section ID with a value of two, the number of
register writes, and then four 32-bit words per register write. The words per register are the
block number, register address, register data, and register size. Register size will either be 1, 2
or 4 corresponding to an 8, 16 or 32-bit register. In all cases, the register data is a 32-bit field
with the data always starting at bit 0:
86 | Mobilygen Corp Confidential

Firmware Loader Firmware Image Format
unsigned int32 sectionId = 2;
unsigned int32 numRegisters;
repeat numRegisters

{
unsigned int32 blockId;
unsigned int32 address;
unsigned int32 data;
unsigned int32 size;
}

In order to process this section, the System Host CPU must write each register in order with the
correct address, data, and size parameters.

9.1.4 Firmware

Boot

There are two firmware sections in the binary image; the Boot section and the Main section.
The Boot firmware section contains a small amount of boot code for the MG1264 Codec that
must be put into a different DRAM address from the Main firmware section. Each firmware
section has the same format; they differ only in the location in the binary image.

The structure of the firmware section contains the section ID with value of one, the size of the
firmware data to be downloaded in bytes, the start address of the firmware data, the partition ID
of the firmware data, followed by the firmware data itself. The size of the firmware data will
always be a multiple of four.

The Boot section is small, and is typically 1024 bytes of firmware data:

unsigned int32 sectionId = 1;
unsigned int32 firmwareSize;
unsigned int32 firmwareAddress;
unsigned int32 firmwarePartition;
repeat firmwareSize/4

{
unsigned int32 firmwareData;
}

In order to process this section, the System Host CPU must copy the firmware data to the ad-
dress specified in the firmware section.

Main

The Main firmware section uses the same format as the Boot section, but is typically much larg-
er and is stored at a different address using a different partition. In order to process this section,
the System Host CPU must copy the firmware data to the address specified in the firmware sec-
tion.

9.1.5 Uninitialized Data

The MG1264 Codec firmware requires that a section of the MG1264 Codec DRAM be set to
zero before execution begins. This section is called the BSS section.
Confidential Mobilygen Corp. | 87

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
The structure of the BSS section is similar to the firmware section, except that there is no firm-
ware data. It consists of the section ID with a value of three, the size of the area to be zeroed in
bytes, the start address of the zero data, and the partition ID to use. The size of the BSS area
will always be a multiple of four:

unsigned int32 sectionId = 3;
unsigned int32 bssSize;
unsigned int32 bssAddress;
unsigned int32 bssPartition;

In order to process this section, the System Host CPU must zero-out the MG1264 Codec
DRAM starting at the given address for the specified number of bytes.

9.1.6 End

The End section consists simply of the section ID with a value of five. This section is at the end
of the binary image, and can be used by the System Host CPU to indicate that the file was parsed
successfully.

9.2 Sample Code
Mobilygen provides sample code for the firmware loader. This code assumes that the System
Host CPU is the same endian structure as the binary image. Since the binary image is originally
little endian, a big endian host will have to swap the data within the file, with the exception of
the first MBY0 string, which is a character string that does not need swapping.

Pseudocode for the sample code follows, assuming that the System Host CPU is little endian.
Byte reversal can be done using the macro:

#define SWAP_ENDIAN(A) (((A & 0xff000000) >> 24) | \
 ((A & 0x00ff0000) >> 8) | \
 ((A & 0x0000ff00) << 8) | \
 ((A & 0x000000ff) << 24))

The pseudocode contains the functions “CopyToDram”, “ZeroDram”, and “WriteRegister”.
These are functions that copy a block of local memory to the MG1264 Codec memory, zero-out
a block of MG1264 Codec memory, and write to a CSR register. Mobilygen also provides a
driver layer for the MG1264 Codec Host Interface called the Hardware Abstraction Layer
(QHAL) which contains code to perform these functions. It is expected that these calls are im-
plemented using real QHAL calls:

int qmmLoadAndRun(char *imageBuffer, int imageSize)
{

// set current position of the firmware image to the start
currentPos = imageBuffer;

// read the first 4 bytes and check against the magic number and
// fail if they do not match
if ((imageBuffer[0] != 'M') || (imageBuffer[1] != 'B') ||

(imageBuffer[2] != 'Y') || (imageBuffer[3] != '0'))
{

printf(“bad magic number\n”);
88 | Mobilygen Corp Confidential

Firmware Loader Sample Code
return(0);
}

// move past the header to the version field and retrieve the version
currentPos++;
version = *currentPos++;

// Continue in a loop processing each section as it is found.
// In order to handle corrupted images, the loop exits as
// soon as the current firmware image pointer goes past the
// size of the firmware image.
while (currentPos - imageBuffer < imageSize)
{

// read the id of the current section and move to the next field
sectionId = *currentPos++;

switch (sectionId)
{

case QMM_LOAD_SECTION:

// read the size, address, and partition of the firmware
// data to be downloaded.
size = *currentPos++;
addr = *currentPos++;
partition = *currentPos++;

// copy the firmware data to codec memory
CopyToDram(addr, size, (char *)currentPos, partition);

// move to next section
currentPos = (int*)((char *)currentPos + size);

break;

case QMM_CSR_SECTION:
// get number of registers to write
numRegisters = *currentPos++;

// iterate across the set of registers, writing each one as they
// are read.
for (i = 0; i < numRegisters; i++)
{

csrBlock = *currentPos++;
csrAddr = *currentPos++;
csrData = *currentPos++;
csrSize = *currentPos++;

// write the register
WriteRegister(csrBlock, csrAddr, csrSize, csrData);

}

break;
Confidential Mobilygen Corp. | 89

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
case QMM_BSS_SECTION:

// read the size, address and partition of the bss section
size = *currentPos++;
addr = *currentPos++;
partition = *currentPos++;

// clear codec memory as specified
ZeroDram(addr, size, partition);
break;

case QMM_GPB_SECTION:

// retrieve the GPB address for this image
gpb = *currentPos++;
break;

case QMM_END_SECTION:

// Flag that the end section has been found
currentPos++;
break;

}
}

}

90 | Mobilygen Corp Confidential

Chapter 10. Application
Programming Interface
The MG1264 Low Power H.264 and AAC Codec for Mobile Devices is designed for use
in mobile applications. The MG1264 Codec integrates the Media Processor Multi-threaded
Microcontroller along with specialized hardware modules that are responsible for the real-
time encoding and decoding of video and audio streams. This processing is done under the
control of firmware running on the micro controller that presents a programming interface
to the System Host CPU.

This chapter describes the Application Programming Interface (API) for the Media Proces-
sor firmware and how the Media Processor responds to its API calls. It is the functional
specification for the firmware and a programming manual for the System Host CPU-based
software.

The API is partitioned into five types of interface elements that are used by the System Host
CPU to control the firmware. They are:

• The Firmware State Machine

• Commands sent from the System Host CPU to the firmware that change the state of
the firmware.

• Configuration information sent from the System Host CPU to the firmware that
change parameters that control how the firmware operates in the various states.

• Asynchronous notifications sent from the firmware to the System Host CPU to inform
the System Host CPU of specific events.

• Status information made available by the firmware that can be polled by the System
Host CPU to obtain information about how the firmware is operating. This status in-
formation is state- and bitstream-dependent and changes over time, often in response
to an asynchronous notification.

Taken together, these elements comprise the logical interface of the firmware. Three addi-
tional interface elements must be described to complete the picture of how the firmware is
controlled. These elements are:

• How to send commands and read status and events from the System Host CPU.

• How to format bitstreams so that they are properly decoded by the Media Processor
firmware.

• How to read encoded bitstreams from the Media Processor firmware.
Confidential Mobilygen Corp. | 91

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
All eight of these interface elements are described in this document. The physical connection
between the System Host CPU and the Media Processor Controller is presented first, followed
by the logical interface of the firmware, and then the bitstream interfaces for the encoder and
decoder.

10.1 Host Interface and the Hardware Abstraction Layer
The MG1264 Codec interfaces with an external System Host CPU through its MG1264 Codec
Host Interface, which is accessed through a 16-bit SRAM-like asynchronous bus. In this con-
figuration, the System Host CPU is the bus Master, and the MG1264 Codec is the Slave.

The MG1264 Codec Host Interface provides the System Host CPU with the ability to read/write
the DRAM, read/write Configuration/Status Registers (CSR), and send bitstream data to the de-
coder. The MG1264 Codec Host Interface is also used to implement an inter-processor commu-
nication protocol using the mailbox registers and the System Host CPU interrupt signal.

The QHAL is Mobilygen's Hardware Abstraction Layer that implements the control logic re-
quired to use the host bus effectively. The QHAL is meant to be ported and executed on the Sys-
tem Host CPU, and is written in ANSI-C.

The QHAL is made up of the external memory driver (qhal_em), the CSR register driver
(qhal_qcc), the bitstream transfer driver (qhal_bs), the mailbox control driver (qhal_mbox), and
the host bus register driver (qhal_host, also known as the low-level driver). The qhal_host driv-
er is the only module that must change when moving between different host processors. Once
the qhal_host is properly functioning, the rest of the QHAL modules will work. For the purpos-
es of this document, qhal_host and qhal_qcc can be ignored. The firmware API can be imple-
mented only with qhal_em, qhal_bs, and qhal_mbox calls.

The structure of the QHAL is shown in Figure 10-1.

Figure 10-1 QHAL Structure

10.1.1 QHAL_EM

The qhal_em is the external DRAM driver. This driver configures the memory channel and pro-
vides interfaces to the read/write blocks of memory.

The MG1264 Codec Host Interface provides two concurrent memory channels; one is used for
bitstream data, and the other is used for command and control. Both channels can be used in
PIO mode, but only the bitstream channel can be used with hardware flow-control DMA. In
systems that do not have hardware flow-control DMA, only the command channel should be
used.

Host Application

Host Adaptation Layer

Bitstream

API

Memory

API

Module
Configuration

API

Mailbox API
(Interprocessor
Communication)

Customer Provided

Mobilygen Provided

(Mobilygen/Customer)
Provided
92 | Mobilygen Corp Confidential

Application Programming Interface Host Interface and the Hardware Abstraction Layer
There are two sets of read/write functions; they are 16-bit word read/write and byte-sized read/
write functions. In either case, the total size read or written must be a multiple of 32 bits, but
the word-size read/write functions do endianness conversion if required. The Media Processor
processor is big-endian meaning that qhalem_read_words and qhalem_write_words will per-
form a byte-swap before writing the data if the System Host CPU is little endian.

Note that swapping is typically only required for commands and events that are rel-
atively small. Bitstreams are always transferred using the byte-sized functions that
never swap data.

The header file for the qhal_em module is:

typedef enum {
 QHALEM_ACCESSTYPE_CMD,
 QHALEM_ACCESSTYPE_STREAM
} QHALEM_ACCESSTYPE;

typedef enum {
 QHALEM_MODE_FBFRAME,
 QHALEM_MODE_FBFIELD,
 QHALEM_MODE_LINEAR
} QHALEM_MODE;

typedef enum {
 QHALEM_PRIORITY_NORMAL=0,
 QHALEM_PRIORITY_LOWER=1,
 QHALEM_PRIORITY_HIGHER=2,
 QHALEM_PRIORITY_HIGHEST=3
} QHALEM_PRIORITY;

typedef enum {
 QHALEM_BURSTSIZE_8WORDS=0,
 QHALEM_BURSTSIZE_16WORDS=1,
 QHALEM_BURSTSIZE_32WORDS=2,
 QHALEM_BURSTSIZE_64WORDS=3
} QHALEM_BURSTSIZE;

/* No one should modify a handle or what is inside */
typedef int qhalem_handle_t;

qhalem_handle_t qhalem_open(QHALEM_ACCESSTYPE type,QHALEM_MODE
txmode);

int qhalem_setconfig(qhalem_handle_t em_h, char threshold,
QHALEM_BURSTSIZE burst, QHALEM_PRIORITY priority);

int qhalem_read_bytes(qhalem_handle_t em_h, unsigned char blockID,
unsigned long addr, char *buffer, int nBytes);

int qhalem_read_words(qhalem_handle_t em_h, unsigned char blockID,
unsigned long addr, long *buffer, int nWords);

int qhalem_write_bytes(qhalem_handle_t em_h, unsigned char
blockID, unsigned long addr, char *buffer, int nBytes);
Confidential Mobilygen Corp. | 93

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
int qhalem_write_words(qhalem_handle_t em_h, unsigned char
blockID, unsigned long addr, long *buffer, int nWords);

int qhalem_close(qhalem_handle_t em_h);

10.1.2 QHAL_MBOX

The qhal_mbox driver is used to perform inter-processor communication between the System
Host CPU and the Media Processor. It is a set of high-level functions that manipulate QCC reg-
isters. There are two mailboxes in the system (called 0 and 1). Each mailbox has a data register
and an event source register. Mailbox 0 is for Mobilygen internal use, and mailbox 1 is for ap-
plication use.

The mailboxes registers are used to generate COMMAND_READY interrupts and
EVENT_READY interrupts from the System Host CPU to the Media Processor.
COMMAND_READY interrupts are generated by qhalmbox_write operations (the actual writ-
ten data is ignored), and EVENT_READY interrupts are generated using qhalmbox_read oper-
ations. The meaning of COMMAND_DONE and EVENT_READY are explained in
“Command Transfer Protocol” on page 98.

An application can determine which, if any, event occurred using the qhal_mbox_get_event
function. This function returns if none, either, or both of the COMMAND_DONE or
EVENT_READY interrupts have occurred. An application can either poll this function, or im-
plement an interrupt handler that wakes up a blocked thread that then calls this function.

The qhal_mbox_get_event function returns a bit field that contains an indication of which event
occurred. The bit fields are called QHAL_MBOX_EVENT_READ, and
QHAL_MBOX_EVENT_READY. The Read event corresponds to COMMAND_DONE, and
the Ready event corresponds to EVENT_READY.

The full qhal_mbox.h header is shown as:

typedef enum {
 QHAL_MBOX0,
 QHAL_MBOX1
} QHALMBOX_DEV;

#define QHALMBOX_EVENT_NONE 0
#define QHALMBOX_EVENT_READY 1
#define QHALMBOX_EVENT_READ 2
#define QHALMBOX_EVENT_ALL 3
typedef int QHALMBOX_EVENT;

qhalmbox_handle_t qhalmbox_open(QHALMBOX_DEV mbox);

int qhalmbox_get_event(qhalmbox_handle_t mbox_h,QHALMBOX_EVENT
*event);
int qhalmbox_read(qhalmbox_handle_t mbox_h, unsigned long *datap);
int qhalmbox_write(qhalmbox_handle_t mbox_h, unsigned long data);
int qhalmbox_close(qhalmbox_handle_t mbox_h);
94 | Mobilygen Corp Confidential

Application Programming Interface Host Interface and the Hardware Abstraction Layer
10.1.3 QHAL_BS

The qhal_bs driver is used to send compressed data to the MG1264 Codec’s input data port
(called the System Input Stream Controller or SISC). Other than the traditional open and close
functions, it features a single function; qhalbs_write_bytes(). This function sends byte stream
data to the MG1264 Codec without endianness conversion. Refer to “H.264/ACC Decoder In-
terface Object” on page 111 for additional information.

qhalbs_handle_t qhalbs_open();
int qhalbs_setconfig(qhalbs_handle_t bs_h,int threshold);
int qhalbs_write(qhalbs_handle_t bs_h, char *buffer, int length);
int qhalbs_close(qhalbs_handle_t bs_h);
Confidential Mobilygen Corp. | 95

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10.2 Media Processor Firmware Programming Model
This section describes the programming model used by the Media Processor firmware.

10.2.1 Control Objects

The firmware presents multiple “objects” to the System Host CPU. Each of the objects has a
well-defined state machine, a set of commands that it accepts and acts upon, a set of configura-
tion parameters whose values can be set by the System Host CPU, a set of asynchronous event
notifications that it sends to the System Host CPU, and status that can be read by the System
Host CPU.

The Media Processor firmware presents the following objects (called control objects), each of
a different type:

• System Control

• H.264/AAC AV Encoder

• H.264/AAC AV Decoder

Each control object is assigned a unique ID, and each command and status message is tagged
with this ID.

10.2.2 Commands, Events, and Inter-Processor Communications

The primary methods of communication between the System Host CPU and the Media Proces-
sor firmware are commands and events. Commands are sent from the System Host CPU to the
firmware, and events are sent from the firmware to the System Host CPU.

A “Command” is a request by the System Host CPU for the Media Processor firmware to either
change state, or to configure an operational parameter. Commands are executed immediately
upon request, in the order in which they are received. If the command is a state-change request,
then the state change operation will be complete when the command completes execution.

An “Event” is a notification sent by the Media Processor firmware to the System Host CPU that
a specific event has occurred. The event optionally carries a set of parameters that give more
information about the event at the time that it occurred. New events are internally queued by
the Media Processor firmware while the System Host CPU is processing the current event. The
queue depth is configurable and can be set large enough so that no event is lost (several hundred
events).

The System Host CPU writes commands over the MG1264 Codec Host Interface to area in the
MG1264 Codec’s external DRAM called the “Command Block.” Events are stored in the ex-
ternal DRAM and are read by the System Host CPU using the MG1264 Codec Host Interface.
The event area should be treated as read-only by the System Host CPU.

The transfer protocol of both commands and events is fully handshaked, and uses interrupts to
ensure that no data is lost. The details of this protocol are provided in “Sending a Command to
the Firmware” on page 98 and “Reading Events from the Media Processor Firmware” on
page 99.
96 | Mobilygen Corp Confidential

Application Programming Interface Media Processor Firmware Programming Model
10.2.3 Global Pointer Block

There are a number of data structures stored in the DRAM that must be accessed by the System
Host CPU. The addresses of these data structures are found in the Global Pointer Block struc-
ture. The address of the global pointer block is determined when the firmware image is down-
loaded to the Media Processor.

Each of the structure members is a big-endian, 32-bit field. The global data block structure is:

typedef struct
{
 COMMAND *cmdBlock;
 EVENT *evBlock;
 void *systemControlStatus;
 void *avDecoderStatus;
 void *avEncoderStatus;
 void *reserved;
 int productConfiguration;
 void *meStatus;
} GLOBAL_POINTER_BLOCK;

The command block is a shared memory buffer used for sending commands from the System
Host CPU to the firmware. The cmdBlock field contains the address of the command block in
the external DRAM.

The event block is a shared memory buffer used to send asynchronous event information from
the firmware to the System Host CPU. Its operation is described in “Reading Events from the
Media Processor Firmware” on page 99. Note that events are queued internally by the Media
Processor firmware. Therefore, the System Host CPU must fetch the address of the current
event for EVERY event. The evBlock field contains the address of the current event.

The three status blocks are used by the firmware to post status information for the System Host
CPU to poll. There is one status block for each of the three control objects in the system. The
status block pointers contain the addresses for these blocks.

The product configuration word is used by the System Host CPU to control how the firmware
initializes itself. The System Host CPU write overrides the contents of the this field during the
boot loading phase of the firmware (with the qmmloader application). Details concerning the
specific product configurations are contained in a separate application note.
Confidential Mobilygen Corp. | 97

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10.2.4 Sending a Command to the Firmware

Command Block

The System Host CPU uses the Command Block to send a command to the Media Processor
firmware The address of the command block is stored in the global pointer block. Each com-
mand contains the target control object ID, the command opcode, up to six 32-bit arguments, a
return code, and up to seven 32-bit return values.

Each field is a big-endian, 32-bit field. The structure of the command block is shown as:

typedef struct
{
 CONTROLOBJECT_ID controlObjectId;
 unsigned int opcode;
 unsigned int arguments[6];
 unsigned int returnCode;
 unsigned int returnValues[7];
} COMMAND;

Command Transfer Protocol

Sending a command from the System Host CPU to the Media Processor firmware is a fully
handshaked transaction that ensures that no data is lost. The handshaking is done through two
interrupts: the COMMAND_READY interrupt and the COMMAND_DONE interrupt. The
COMMAND_READY interrupt is generated by the System Host CPU to signal the firmware
that a new command has been written to the command block. The COMMAND_DONE inter-
rupt is generated by the Media Processor firmware to signal to the System Host CPU that the
command execution has completed. No new commands can be generated by the System Host
CPU until the COMMAND_DONE interrupt has been received. The System Host CPU gener-
ates the COMMAND_READY interrupt through writes from the mailbox register in the
MG1264 Codec Host Interface.

Figure 10-2 Command Transfer Timing

Processes Command

Write Command Clear COMMAND_DONE

Time

Time

MG1264

Host

Generate
COMMAND_READY Interrupt

Generate COMMAND_DONE
Interrupt

1
2

3 4

5 6
98 | Mobilygen Corp Confidential

Application Programming Interface Media Processor Firmware Programming Model
The command transfer protocol is:

1: The System Host CPU writes the command block including opcode, control object ID,
and arguments. Only the necessary number of arguments need by written. This is done
using the qhalem_write_words API call. It is important to use the qhalem_write_words
call as this corrects for endian-ness.

2: The System Host CPU writes to the mailbox register to assert the
COMMAND_READY interrupt and clear the COMMAND_DONE interrupt. This is
done through a call to the function qhalmbox_write().

3: The Media Processor firmware responds to the interrupt and processes the command.

4: The Media Processor firmware reads from the mailbox register to assert the
COMMAND_DONE interrupt and clear the COMMAND_READY interrupt.

5: The System Host CPU waits for and receives the COMMAND_DONE interrupt. The
COMMAND_DONE and EVENT_READY interrupts are multiplexed on the same in-
terrupt pin. The System Host CPU must read the interrupt source register to determine
which interrupt is the source. This is done through the API qhalmbox_get_event() call.
This API call also clears the mailbox interrupt bit.

6: The System Host CPU reads the command return code and the return values from the
command block.

A return code of zero indicates the command was rejected. A return code of one means success.
Any other positive return code indicates success with additional information encoded in the val-
ue. The return values can be anything and are command-specific.

10.2.5 Reading Events from the Media Processor Firmware

Events are sent by the Media Processor firmware to the System Host CPU using the same hand-
shaking mechanism that is used to send commands, but in reverse. Events operate on a publish/
subscribe paradigm so that the System Host CPU will only see events to which it has sub-
scribed. Some of the events are periodic and relatively high in frequency (once per frame/field/
picture, etc.), and are intended only for debug purposes. By default, no events are subscribed.

Event Block

Event Blocks are used by the firmware to store a single event for the System Host CPU. Event
blocks are internally queued by the Media Processor firmware and then sent one-by-one to the
System Host CPU for processing. The System Host CPU can find the address of the current
event (the one to be processed) by reading the event block pointer in the global data pointer
block. It is critical to understand that this address will change, and the address must be
re-read for each event.

Each event block contains the event ID, the source control object ID, a 32-bit timestamp mea-
sured in microseconds, and a variable length payload up to a maximum of thirteen words. The
event ID is a globally unique number that identifies the event type. Each field is 32-bits, big en-
dian. The structure of the event block is shown as:

typedef struct
{
 CONTROLOBJECT_ID controlObjectId;
 EVENT_ID eventId;
 unsigned int timestamp;
 unsigned int payload[13];
} EVENT;
Confidential Mobilygen Corp. | 99

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Event Transfer Protocol

The transfer protocol for sending events from the Media Processor firmware to the System Host
CPU is identical to the command transfer protocol except the role of the processors is reversed.
Sending an event is a fully-handshaked transaction that ensures that no data is lost. The hand-
shaking is done through two interrupts: the EVENT_READY interrupt and the EVENT_DONE
interrupt.

The EVENT_READY interrupt is generated by the Media Processor firmware to signal to the
System Host CPU that a new event has been written to the event block. The EVENT_DONE
interrupt is generated by the System Host CPU to signal the firmware that the event handling
has completed. No new events can be generated by the firmware until the EVENT_DONE in-
terrupt is received. The System Host CPU generates the EVENT_DONE interrupt through
reads from the mailbox register in the MG1264 Codec Host Interface.

Figure 10-3 Event Transfer Timing

The complete Event Transfer protocol is:

1. The Media Processor firmware writes the event ID, control ID, and payload to the event
block.

2: The Media Processor firmware writes to the mailbox register to assert the
EVENT_READY interrupt and clear the EVENT_DONE interrupt.

3: The System Host CPU responds to the interrupt and reads the current event block ad-
dress from the global pointer block. The System Host CPU must read the interrupt
source register to determine if the interrupt is the EVENT_READY interrupt.

4: The System Host CPU processes the event.

5: The System Host CPU reads from the mailbox register to assert the EVENT_DONE
interrupt and clear the EVENT_READY interrupt. This is done using the
qhalmbox_read() API call.

6: The Media Processor firmware waits for and receives the EVENT_DONE interrupt.

7: The Media Processor firmware clears the EVENT_DONE interrupt.

The internal queueing mechanism can be represented as shown in Figure 10-4.

Read and Process Event

Write Event Clear EVENT_DONE
Time

Time

MG1264

Host

EVENT_DONE Interrupt

EVENT_READY
Interrupt

1 2

3

4

5

6 7
100 | Mobilygen Corp Confidential

Application Programming Interface Media Processor Firmware Programming Model
Figure 10-4 Event Queuing

10.2.6 Subscribing and Unsubscribing to Events

By default, all events are unsubscribed, meaning that the System Host CPU will receive no
events. Each event that the System Host CPU is interested in receiving must be explicitly sub-
scribed using the SUBSCRIBE_EVENT command. Similarly, events can be unsubscribed us-
ing the UNSUBSCRIBE_EVENT command. The argument list for both commands is a NULL
terminated list of event IDs that should be subscribed/unsubscribed.

SUBSCRIBE_EVENT

For example:

COMMAND cmd;
cmd.controlObjectId = AVENCODER_CTRLOBJ_ID;
cmd.opcode = Q_CMD_OPCODE_SUBSCRIBE_EVENT;
cmd.arguments[0] = Q_AVE_EV_BITSTREAM_BLOCK_READY;
cmd.arguments[1] = Q_AVE_EV_VIDEO_FRAME_ENCODED;
cmd.arguments[2] = 0;

EVENT_DONE

EVENT_READY

Current Event Buffer Event Queue

Event Event Event Event Event New Events

Command Name Q_CMD_OPCODE_SUBSCRIBE_EVENT

Arguments Variable list of 32-bit words. Each word contains a valid even ID. The list of
IDs should be terminated by a NULL (0) 32-bit word

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States All

Description
The Subscribe Event can be issued at any time, although it is expected that
the System Host CPU application will subscribe to a set of events at start-
up.
Confidential Mobilygen Corp. | 101

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
UNSUBSCRIBE_EVENT

For example:

COMMAND cmd;
cmd.controlObjectId = AVENCODER_CTRLOBJ_ID;
cmd.opcode = Q_CMD_OPCODE_UNSUBSCRIBE_EVENT;
cmd.arguments[0] = Q_AVE_EV_BITSTREAM_BLOCK_READY;
cmd.arguments[1] = Q_AVE_EV_VIDEO_FRAME_ENCODED;
cmd.arguments[2] = 0;

10.2.7 Configuration Parameters

Each control object presents a set of configuration parameters for the System Host CPU to set.
These parameters control how the object behaves in each state, and also how it transitions
states.

A configuration parameter has a unique ID and an associated 32-bit value. The 32-bit value can
include multiple bit fields. Configuration parameters are set using the CONFIGURE command,
which has the same opcode for all control objects. Parameters can only be changed when the
target control object is in an IDLE state.

Configure Command

For example:

COMMAND cmd;
cmd.controlObjectId = AVDECODER_CTRLOBJ_ID;
cmd.opcode = Q_CMD_OPCODE_CONFIGURE;

Command Name Q_CMD_OPCODE_UNSUBSCRIBE_EVENT

Arguments Variable list of 32-bit words. Each word contains a valid even ID. The list of
IDs should be terminated by a NULL (0) 32-bit word.

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States All

Description
As previously stated, the typical operational procedure is to subscribe to
events at startup, and does not either unsubscribe or further subscribe dur-
ing operation. However, these features are supported for debug purposes,
or for the implementation of features not anticipated at this time.

Command Name Q_CMD_OPCODE_CONFIGURE

Arguments Variable list of 32-bit words. Each pair consists of a configuration parame-
ter name and a parameter value.

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States All

Description
All configuration parameters are set using the CONFIGURE command.
Each parameter has a 32-bit value associated with it that is stored by the
firmware.
102 | Mobilygen Corp Confidential

Application Programming Interface Media Processor Firmware Programming Model
cmd.arguments[0] = Q_AVD_CFG_BITSTREAM_TYPE;
cmd.arguments[1] = Q_AVD_CFP_BITSTREAM_TYPE_QBOX;
cmd.arguments[2] = 0;

10.2.8 Status Block

Each control object has a status block located in the DRAM that is pointed to by the global
pointer block. The intent of the status block is to store information that does not change over
time, or whose changes do not need to be synchronized with the System Host CPU. The System
Host CPU can read the contents of the status block at any time simply by accessing the Media
Processor firmware memory using standard read cycles. The specific layout of each status block
is described in each control object’s section.
Confidential Mobilygen Corp. | 103

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10.3 Bitstream Formats
The Media Processor is capable of generating and decoding any bitstream formats, but the firm-
ware currently only supports QBox, Elementary, and MP4.

10.3.1 QBox Bitstream Format

The QBox format consists of a simple header preceding audio and video access units. It is de-
signed for applications where the System Host CPU is doing bitstream multiplexing or demul-
tiplexing. When encoding, the Media Processor firmware sends access units (either compressed
audio or video frames) following a standard header (called the QBox Header). This header has
the size of the access unit and information about the contents. It is expected that the System
Host CPU will only use the header for informational purposes and will not store entire QBoxes.
When decoding, the System Host CPU must then generate these headers on the fly, and send
the header and payload to the Media Processor for decoding.

The first video QBox contains the AVC sequence parameter set NAL unit. Subsequent QBox
headers contain either I-frames or P-frames. QBoxes that contain I-frames contain both a pic-
ture parameter set NAL unit followed by the video frame NAL unit. QBoxes that contain only
P-frames contain only the frame NAL unit.

As a C structure, the QBox header structure is:

typedef struct {
uint32 box_size;
uint32 box_type;
uint32 box_flags;
uint16 sample_stream_type;
uint16 sample_stream_id;
uint32 sample_flags;
uint32 sample_cts; // optional
uint8 sample_data[];

} QBox;

box_size: Size of the box including the header.

box_type: Always four characters “qbox”.

box_flags: The upper eight bits are the header version. The lower 24 bits are flags. Bit 0 is set
if there is sample data in the box. Bit 1 is set if this is the last access unit in the stream. Bit 2 is
set if the QBox is followed by padding bytes to make the QBox size, plus the padding bytes a
multiple of 4 bytes.

sample_stream_type: Set to 1 if it is an AAC audio frame or configuration data, or set to 2 if
it is an H.264 frame or configuration data.

sample_stream_type: Unused at this time.

sample_flags: Bit 0 is set if the data contains configuration information for the decoder. Bit 1
is set if the CTS field is present and valid. Bit 2 is set if the video frame is a synchronization
point (meaning I frame for H.264), and bit 3 is set if the frame is disposable (meaning a B frame
in H.264). Bit 4 is set if the audio or video sample is the result of a MUTE command sent to the
AV encoder. Bits 30-31 represent the number of leading padding bytes in the QBox (0-3) that
are skipped by the codec demultiplexer.

cts: Sample composition time in 90 kHz ticks.
104 | Mobilygen Corp Confidential

Application Programming Interface Bitstream Formats
10.3.2 Elementary Video

The Elementary Video stream accepted and generated by the Media Processor firmware is spec-
ified in ISO/IEC 14496-10 Annex B. This stream consists of a sequence of NAL units with each
NAL unit proceeded by a startcode. Note that when the decoder is in elementary video mode,
it cannot accept or generate compressed audio data at the same time.
Confidential Mobilygen Corp. | 105

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10.4 System Control Interface Object

10.4.1 Overview

The System Control Interface object is responsible for overall system control such as power
management, audio and video input or output, and the OSD display.

For the OSD Bitmap functions, these restrictions are in the APIs:

1. Bitmap Format Contraints:

• Biplanes = 0

• BiBitCount = 8; 8 bpp

• BiCompression = 0; no compression

2: Width of the Bitmap and OSD Screen Size must be multiple of 4

3: Start position for the OSD destination screen has to be multiple of 4

4: Default Bitmap Index for "Transparent"

10.4.2 Object ID

The system control object has the object ID of 0x1.

10.4.3 State Machine

The system control object has no state machine. It is considered to be always in the ENABLED
state.

10.4.4 Commands

ECHO

For example:

COMMAND cmd;
cmd.controlObjectId = SYSTEMCONTROL_CTRLOBJ_ID;
cmd.opcode = Q_SYS_CMD_ECHO;
cmd.arguments[0] = 1; // any arbitrary 32 bit value

Command Name Q_SYS_CMD_ECHO
ID 1

Arguments Any 32-bit value.

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States All

Description
The ECHO command is used primarily for debug and bring-up purposes.
When the ECHO command is received, a corresponding ECHO event,
Q_SYS_EV_ECHO, is created with the first payload entry of the event be-
ing the same as the first argument of the command.
106 | Mobilygen Corp Confidential

Application Programming Interface System Control Interface Object
POWERDOWN

10.4.5 Configuration Parameters

AUDIO_NUM_CHANNELS

AUDIO_SAMPLE_RATE

Command Q_SYS_CMD_POWERDOWN
ID 5

Arguments 0 = To exit
1 = To enter sleep

Return Code Cannot be checked, see below
Return Values None
Valid States All

Description

The POWERDOWN command is used to transition the codec to and from
a sleep mode where very little power is consumed. If the argument value
is 1, then the codec enters the POWERDOWN state, if its 0 then it wakes
up. Note that the command sends a COMMAND_DONE interrupt as all
other commands do, but it is critical to note that the System Host CPU code
cannot check the return code when entering sleep, because the memory
controller has been placed in an auto-refresh state. The command cannot
fail and it is assumed that if a COMMAND_DONE interrupt is received, the
command was accepted.

Parameter Q_SYS_CFG_AUDIO_NUM_CHANNELS
ID 6

Value 1 or 2
States IDLE

Effective On the next AV decoder or AV encoder state transition out of IDLE.

Description This parameter is to configure the number of input and output channels
(stereo or mono).

Parameter Q_SYS_CFG_AUDIO_SAMPLE_RATE
ID 7

Value 24000, 32000, 48000
States IDLE

Effective On the next AV decoder or AV encoder state transition out of IDLE.
Description This parameter configures the sampling rate of the system.
Confidential Mobilygen Corp. | 107

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
AUDIO_SAMPLE_SIZE

AUDIO_OUT_MASTER_CLOCK

AUDIO_OUT_SERIAL_MODE

Parameter Q_SYS_CFG_AUDIO_SAMPLE_SIZE
ID 8

Value 16, 20, 24
States IDLE

Effective On the next AV decoder or AV encoder state transition out of IDLE.
Description This parameter configures the sampling size.

Parameter Q_SYS_CFG_AUDIO_OUT_MASTER_CLOCK
ID 10

Value 1 = Q_SYS_CFP_AUDIO_OUT_MASTER_CLOCK_256FS
2 = Q_SYS_CFP_AUDIO_OUT_MASTER_CLOCK_512FS

States IDLE
Effective On the next AV decoder or AV encoder state transition out of IDLE.

Description
This parameter configures the frequency of the audio output Master clock
to either 256 times the sampling frequency or 512 times the sampling fre-
quency.

Parameter Q_SYS_CFG_AUDIO_OUT_SERIAL_MODE
ID 9

Value 1 = Q_SYS_CFP_AUDIO_OUT_SERIAL_MODE_I2S
2 = Q_SYS_CFP_AUDIO_OUT_SERIAL_MODE_LEFT

States IDLE
Effective On the next AV decoder or AV encoder state transition out of IDLE.

Description This parameter configures the formatting of the audio output data to be ei-
ther I2S or left-justified.
108 | Mobilygen Corp Confidential

Application Programming Interface System Control Interface Object
10.4.6 Events

Q_SYS_EV_HEARTBEAT

Q_SYS_EV_ECHO

Event Q_SYS_EV_HEARTBEAT
ID 0x10001

Payload None

Description
The heartbeat event is created once per second to indicate that the firm-
ware is alive. The event can be used for bring-up and/or for debug purpos-
es.

Event Q_SYS_EV_ECHO
ID 0x10002

Payload 0 = Value of the first argument to corresponding ECHO command.

Description
This event is created in response to the Q_SYS_CMD_ECHO command.
The event has a single payload word that contains the value of the first ar-
gument to the ECHO command.
Confidential Mobilygen Corp. | 109

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10.5 Status Block
The system control object maintains a status block that is typically used for bring-up and debug
purposes. The structure of the block is:

typedef struct
{
 int heartbeat;
 unsigned long droppedEvents;
 unsigned long evReadWritePtrs;
 int pendingEvent;
} SYSTEM_CONTROL_STATUS;

10.5.1 heartbeat

The heartbeat field of the status block is periodically incremented by the command processor
in the Media Processor firmware. The rate of increase is much faster than the rate of the heart-
beat event.

10.5.2 droppedEvents

The droppedEvents field is incremented any time an event could not be posted to the internal
event queue because the queue was full. Any dropped event is a serious condition and is con-
sidered a fatal error.

10.5.3 evReadWritePointers

This field stores the read and write pointers (indexes) into the internal event queue. The read
pointer is the pointer used to send events to the System Host CPU, and the write pointer is the
next location to be written with a new event. The read pointer is in the upper 16 bits and the
write pointer is in the lower 16 bits. When the pointers are equal, the queue is empty, otherwise
the full condition has the write pointer lagging behind the read pointer by one.

10.5.4 pendingEvent

This field indicates that the firmware has sent an event to the System Host CPU through the
EVENT_READY interrupt and the System Host CPU has not yet acknowledged it. This field
is typically used for bring-up and debugging of System Host CPU code where events could be
unacknowledged, thus stopping event generation by the firmware.
110 | Mobilygen Corp Confidential

Application Programming Interface H.264/ACC Decoder Interface Object
10.6 H.264/ACC Decoder Interface Object

10.6.1 Overview

The H.264/AAC Decoder Interface object is responsible for controlling the H.264 Video De-
coder, the AAC Decoder, and the demultiplexer as a combined entity. However, the object is
sufficiently flexible to decode only video or audio streams, in both multiplexed and elementary
formats.

The decoder and the video output unit work together to provide a set of trick play features that
are comparable to those found in DVD players. This includes a full set of forward and backward
smooth, slow motion, and scan modes. Additionally, the video output unit contains a scaler that
can be used for PAL/NTSC/VGA conversion and arbitrary zoom.

10.6.2 Logical View of the AV Decoder

An idealized view of the decoder datapath is shown in Figure 10-5.

Figure 10-5 Idealized Decoder Datapath

This object takes compressed bitstreams as its input, and has a video output and audio output
port. It is responsible for creating decoded 4:2:0 images at its video output port, and decoded
PCM samples at its audio output port. The object contains five logical processing blocks:

• Demultiplexer

• AAC Decoder

• H.264 Decoder

• Video Output

• Audio Output

10.6.3 AV Decoder Features

Audio/Video Synchronization

Playback of audio or video streams is synchronized by the video and audio display units. The
synchronization mechanism used is referred to as “Audio Master”. Audio Master means that
the audio is played in a continuous fashion, while video frames are dropped or repeated as need-
ed in order to achieve synchronization. The synchronization algorithm attempts to maintain
synchronization timing of less than 1.5 video frame times (45 ms. in NTSC; 60 ms. in PAL).

There are situations where the system will run as “Video Master”. This includes playing streams
with no audio, and doing trick play where the audio is decoded, but muted. The output units are

Demultiplexer

H.264/AAC Decoder Object

Bitstream

Digital
Audio

Digital
VideoVideo

Output

Audio
Output

SISC

AAC
Decoder

H.264
Decoder
Confidential Mobilygen Corp. | 111

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
also programmed to smoothly switch from the Video Master mode during trick play to Audio
Master mode in normal linear play.

The firmware has a programmable offset that can be used to skew audio or video timing. This
offset is typically required when the video and audio datapaths have different delays. For ex-
ample, a system may contain a video scaler where the incoming video is captured to memory
and then scaled before sending to the MG1264 Codec, whereas the audio is sent out directly. In
this situation, you have to program the offset to one frame time to allow for synchronized pre-
sentation, even with the extra frame delay in the video pipeline.

Hardware/Software Flow Control

Both audio and video data is sent to the single bitstream port in the MG1264 Codec Host Inter-
face. The demultiplexer reads bitstream data from this port and writes the video data to the vid-
eo bit buffer and audio data to the audio bit buffer. The MG1264 Codec Host Interface features
full hardware flow control either through a DMA request de-assertion for DMA operations, by
asserting WAIT, or by delaying the ready bit during polling. This means that no data is lost if
the MG1264 Codec cannot accept more data. Flow control is triggered any time either the audio
or video buffers are completely full and new data is sent to the demultiplexer.

In some system designs, enabling the hardware flow control is not desirable because it locks the
bus and prevents access to other devices on the same bus. In order to prevent this problem, the
firmware provides commands that return the emptiness of both the video and audio buffers,
which allows the System Host CPU to never send more data than is allowed in the buffer. The
emptiness of the buffer is expressed both in bytes and in access units (frames). The System Host
CPU must be careful not to send too many data bytes or too many access units that could trigger
the hardware flow control.

Automatic Video Standard Conversion

The firmware supports the conversion of a bitstream from any of the supported video standards
(PAL/NTSC/VGA) to the currently selected video standard. This conversion includes both spa-
tial (vertical and horizontal scaling) and temporal scaling. The firmware uses a special algo-
rithm for the frame rate conversion and does not rely on audio or video synchronization to do
the frame rate conversion. This special algorithm results in a smoother presentation with fewer
obvious dropped or repeated frames. Video standard conversion is automatic if a stream is de-
tected that has been encoded differently from the current standard.

Arbitrary Video Zoom

The video output unit contains a scaler that can arbitrarily upscale an image to any resolution
(the scaler can also downscale an image to fixed ratios such as 480/576 for PAL to NTSC stan-
dard conversion). The generalized upscaler is used to implement an arbitrary zoom feature
where any part of the image (with the same aspect ratio as the display) can be cropped, and then
zoomed to fit the full-display window.

Arbitrary zoom works for any ratios above 1.0 when the video is not having its standard con-
verted. There is a limitation with zoom in PAL to NTSC where the video output unit is already
downscaling the video with a ratio of 480/576. Since the generalized upscaler only works for
ratios above 1.0, the smallest scaling ratio that is supported in PAL to NTSC is 576/480 = 1.2.
112 | Mobilygen Corp Confidential

Application Programming Interface H.264/ACC Decoder Interface Object
Trick Play

The firmware implements a complete set of trick play features that allow the System Host CPU
to implement a natural user interface that offers the same user experience in both the forward
and reverse directions. Specifically, forward and reverse singlestep, forward and reverse slow-
motion, and forward and reverse smooth-scan (up to 4x) are offered. Additionally, the firmware
can smoothly transition from any of these trick modes back to linear forward or reverse play-
back.

The System Host CPU is also free to implement higher speed trick play scans by sending only
I-frames from specific GOPs. This technique allows for almost any speed of forward or reverse
scan, at the expense of smoothness as a maximum of one frame per GOP is being decoded and
displayed. The API supports a command that forces the firmware to decode and display only
I-frames for a specified amount of frame times.

Trick play techniques are discussed in “Trick Play Techniques” on page 132.

10.6.4 Sending Encoded Bitstreams to the Decoder

Bitstream data is sent to the MG1264 Codec Host Interface bitstream device that, in turn, enters
a FIFO called the System Input Stream Controller (SISC). From the input FIFO, the audio or
video bitstream is demultiplexed into bitstream data and control data for both audio and video.
The bitstream data is stored in a large FIFO and the control data is stored in a queue. The control
data consists of one data structure per audio or video frame, and includes information such as
timestamp, image size, and pointers to the associated bitstream data.

The hardware flow-control WAIT signal is generated by the input FIFO and is asserted anytime
the FIFO becomes full. The input FIFO becomes full when any of the downstream queues or
FIFOs become full. That is, if any of the video access unit queues, audio access unit queues, or
the bitstream FIFOs become full, then WAIT will be asserted until the corresponding decoder
removes data from the queue. The video decoder reads data at 29.97 Hz for NTSC and 25 Hz
for PAL; the audio decode reads data every 1024 output samples (approximately 40 Hz at the
48 kHz sampling rate).

Figure 10-6 Decoder Buffer Structure

There are two types of bitstream transfer algorithms that can be selected by the System Host
CPU. They are referred to as either a “Push” or a “Pull” model, and the model that is used is
selected by the configuration parameter BITSTREAM_SOURCE.

Bitstream Data Input FIFO (256)

WAIT

Video Access Unit Queue

Video Bit Buffer

Video
Decoder

Audio Access Unit Queue

Audio Bit Buffer

Audio
Decoder
Confidential Mobilygen Corp. | 113

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
In the push model, the System Host CPU does not care if the hardware flow control signal
WAIT is asserted either because the bus is not shared, or if the bus can continue to be shared
even if the transfer pauses. It is important to understand that during regular playback, either the
audio or video buffer will be full almost all the time because the incoming data rate will be high-
er than the bitrate at which the bitstream was encoded. Which of the audio or video buffers be-
comes full depends upon the relative bitrates of the audio or video streams, as well as the sizes
of the audio and video bit buffers.

In the pull model, the System Host CPU makes use of signaling from the firmware to ensure
that the hardware flow control mechanism is never triggered.

Push Transfer Model

If the System Host CPU can use the push transfer model, then transferring the bitstream is quite
simple. The System Host CPU can open the QHAL_BS device and send as much or as little
data to the MG1264 Codec as it wishes, as it does not care if the hardware flow control mech-
anism is triggered. Typical transfer logic (for forward playback and trick play) is similar to this:

bytesToSend = size of input file;
char localBuffer[BUFFER_SIZE];
while (bytesToSend != 0)
{

bytesRead = read(inputfd, localBuffer, BUFFER_SIZE];
qhalbs_write_bytes(handle, localBuffer, bytesRead);
bytesToSend -= bytesRead;

}

Pull Transfer Model

In the pull transfer model, the System Host CPU sends data in such a way that the audio or video
buffers never become full, and the hardware flow control signal is never asserted. This is also
referred to as “Non-Blocking Operation”. This section shows sample code that can be used for
non-blocking streaming.

The data streaming algorithm is fairly simple but does require the System Host CPU to parse
the bitstream to identify audio and video data. For purposes of this algorithm, assume the bit-
stream consists of consecutive QBox structures. The key to the algorithm is that there are com-
mands that query the firmware for video and audio buffer emptiness, both in terms of bytes and
control structures. These commands are VIDEO_BUFFER_EMPTINESS and
AUDIO_BUFFER_EMPTINESS as described in “Commands” on page 106. The algorithm
(for forward playback and trick play only) is:

while!(end of file)
{

// sleep 10ms here to allow the host to read some data

// read the available space in each queue/FIFO
videoQueueEmptiness = readVideoQueueEmptiness();
videoFIFOEmptiness = readVideoBitstreamFIFOEmptiness();
audioQueueEmptiness = readVideoQueueEmptiness();
audioFIFOEmptiness = readAudioBitstreamFIFOEmptiness();

while (1)
114 | Mobilygen Corp Confidential

Application Programming Interface H.264/ACC Decoder Interface Object
{
qboxSize = ParseNextQboxSize();
qboxType = ParseNextQboxType();
if (qboxType == VIDEO_QBOX)
{

if (videoFIFOEmptiness - qboxSize < 0)
{

 break;
}
if (videoQueueEmptiness == 0)
{

 break;
}
videoQueueEmptiness--;
videoFIFOEmptiness -= qboxSize;

}
else if (qboxType == AUDIO_QBOX)
{

if (audioFIFOEmptiness - qboxSize < 0)
{

 break;
}
if (audioQueueEmptiness == 0)
{

 break;
}
videoQueueEmptiness--;
videoFIFOEmptiness -= qboxSize;

}

// Calculate the padded size of a qbox to 32 bit bound-
ary

paddedQboxSize = (qboxSize + 3) & 0xfffffffc;

// set the flag in the qbox header saying there is pad-
ding

// Send paddedQboxSize bytes to the codec

// Move to next QBOX by adding qboxSize to the current
read pointer
}

It is important to note the calculation at the end of the loop of the paddedQboxSize. Because the
MG1264 Codec’s Host Interface is implemented as a 16-bit bus without individual byte en-
ables, it is not possible to send an odd number of bytes. Additionally, some devices have an in-
ternal limitation of being only able to send 32-bit word sized data. In order to manage these
limitations, the QBox header has a flag (see “Bitstream Formats” on page 104) in the box flags
that indicate that the QBox being sent is padded to 32-bit alignment. If this flag is set, the pad-
ding bytes are automatically dropped by the QBox demultiplexer.

10.6.5 Object ID

The H.264/AAC decoder object ID is 2.
Confidential Mobilygen Corp. | 115

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10.6.6 State Machine

The AV decoder state machine consists of two parts linked by an IDLE state. The first part is
the forward-play state machine and the second part is the reverse-play state machine. The only
way to transition between the forward and reverse parts of the state machine is by transitioning
to the IDLE state through the STOP command.

States

The decoder object has the following states:

Q_AVD_ST_IDLE: This is the startup state for the decoder, and the target state for the STOP
command. No decoding is done in this state and all internal buffers are flushed. Transitions out
of this state cause the decoder to restart decoding at the next I-frame. The last decoded frame is
output by the video output hardware. The System Host CPU should put the system into an IDLE
state for all bitstream discontinuities (such as changing from one file to another), or for switch-
ing between forward and reverse playback.

Q_AVD_ST_FLUSH: This state is an intermediate state between a playback state and IDLE.
Because sending data to the MG1264 Codec involves hardware flow control, it is often required
to flush the data pipeline on the MG1264 Codec before stopping the bitstream transfer process
on the System Host CPU. Once the System Host CPU has sent the FLUSH command it is free
to use the STOP command to transition to IDLE.

Q_AVD_ST_FWDPLAY: This state performs continuous audio or video decoding and presen-
tation. Additionally, frame rate and spatial conversion is performed as required if the input
stream does not match the current video standard for the AV decoder.

Q_AVD_ST_FWDPAUSE: This state stops the video and audio decoder, and freezes the pre-
sentation at the last video and audio frames. No internal buffers are flushed so that a RESUME
from the PAUSE state is completely seamless. The AV decoder can enter this state explicitly
through the PAUSE command, or it can be entered automatically as part of a SINGLESTEP
command once video decode and display are completed.

Q_AVD_ST_FWDSLOW: This state performs audio or video decoding, but at a rate that is
slower than real time. Audio is decoded internally, but is muted due to discontinuities. Video
frames are presented and deinterlaced (if necessary). Video and audio buffering remains syn-
chronized, allowing for a seamless transition from Q_AVD_ST_FWDSLOW to
Q_AVD_ST_FWDPLAY.

Q_AVD_ST_FWDPAUSE_WAIT: This is a temporary state that the decoder occupies from
the time a SINGLESTEP command is issued to when the decoder has completed decoding and
presenting the next frame. Once the decoding and presentation of this frame is complete, the
decoder object automatically transitions to the Q_AVD_ST_FWDPAUSE state.

Q_AVD_ST_FWDIPLAY: This state performs video decoding of I-frames only. This state is
used during fast-forward with the System Host CPU sending discontinuous parts of the bit-
stream. No audio decoding is done in this state, which prevents a seamless transition to the
Q_AVD_ST_FWDPLAY state. Instead, the System Host CPU should transition to the other
states via the Q_AVD_ST_IDLE state which resets the internal buffers.

Q_AVD_ST_FWDSCAN: This state decodes and displays of every Nth video frame to achieve
a smooth fast-forward effect. Audio is decoded internally, but is muted due to discontinuities.
Video and audio buffering remains synchronized allowing for a seamless transition from
Q_AVD_ST_FWDSLOW to Q_AVD_ST_FWDPLAY.
116 | Mobilygen Corp Confidential

Application Programming Interface H.264/ACC Decoder Interface Object
Q_AVD_ST_BWDPLAY: This state performs continuous video decoding and presentation of
frames in reverse order. No audio is decoded or presented in this state.

Q_AVD_ST_BWDPAUSE: This state stops the video decoder and freezes the presentation at
the last video frame. No internal buffers are flushed so a RESUME from PAUSE is completely
seamless. The AV decoder can enter this state explicitly through the PAUSE command, or au-
tomatically as part of a SINGLESTEP command once video decode and display are completed.

Q_AVD_ST_BWDSLOW: This state performs video decoding and presentation, but at a rate
that is slower than real time. Video frames are presented and de-interlaced (if necessary).

Q_AVD_ST_BWDPAUSE_WAIT: This is a temporary state that the decoder occupies from
the time a SINGLESTEP command is issued to when the decoder has completed decoding and
presenting the previous frame. Once the decode and presentation of this frame is complete, the
decoder object automatically transitions to the Q_AVD_ST_BWDPAUSE state.

Q_AVD_ST_BWDIPLAY: This state performs video decoding of I-frames only. It is used
when performing fast-reverse with the System Host CPU sending discontinuous parts of the bit-
stream. The System Host CPU should transition to the other states via the Q_AVD_ST_IDLE
state which resets the internal buffers.

Q_AVD_ST_BWDSCAN: This state performs video decoding and display of every Nth frame
in order to achieve a smooth fast-reverse effect. The host must transition out of this state with
a STOP command followed by a frame accurate PLAY.
Confidential Mobilygen Corp. | 117

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
State Transition Matrices

These matrices show the commands that can transition from one state to another. Note that sev-
eral transitions are impossible and indicated by a (—) in the cell. Both forward and reverse ma-
trices are shown. No direct state transitions are allowed from a FORWARD state to a REVERSE
state, or vice versa. The starting state is shown in the left column, and the destination state is
shown along the top row.

Table 10-1 Forward State

State IDLE FLUSH PLAY SLOW IPLAY PAUSE_WAIT SCAN PAUSE

IDLE STOP — PLAY — — PLAY — —
FLUSH STOP — — — — — — —
PLAY STOP FLUSH — SLOW IFRAME_PLAY STEP SCAN PAUSE
SLOW STOP FLUSH RESUME SLOW – STEP — PAUSE
IPLAY STOP FLUSH — — — — — PAUSE

PAUSE_WAIT STOP FLUSH RESUME SLOW — — — Automatic
SCAN STOP FLUSH — — — — SCAN —

PAUSE STOP FLUSH RESUME SLOW — STEP — —

Table 10-2 Backward State

State IDLE FLUSH PLAY SLOW IPLAY PAUSE_WAIT SCAN PAUSE

IDLE STOP — PLAY — — PLAY — —
FLUSH STOP — — — — — — —
PLAY STOP FLUSH — SLOW IFRAME_PLAY STEP SCAN PAUSE
SLOW STOP FLUSH RESUME SLOW — STEP — PAUSE
IPLAY STOP FLUSH — — — — — PAUSE

PAUSE_WAIT STOP FLUSH RESUME SLOW — — — Automatic
SCAN STOP FLUSH — — — — SCAN —

PAUSE STOP FLUSH RESUME SLOW — STEP — —
118 | Mobilygen Corp Confidential

Application Programming Interface H.264/ACC Decoder Interface Object
10.6.7 Commands

STOP

PLAY

Command Name Q_AVD_CMD_STOP
ID 1

Arguments None

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States All
Description This command forcibly changes the state of the system to the IDLE state.

Command Name Q_AVD_CMD_PLAY
ID 2

Arguments
[0] Play direction
[1] Start presentation time
[2] 0 for normal play, 1 to display first frame and pause

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States IDLE

Description

This command transitions the AV decoder to the FWDPLAY or BWDPLAY
state, depending upon the value of the play direction argument. If the di-
rection is 0, then the state is FWDPLAY; if the direction is 1, then the direc-
tion is BWDPLAY.
The second argument indicates a start presentation time. If this value is ze-
ro, then presentation starts at the first I-frame that is found in the stream.
A non-zero value results in presentation starting at or later in the forward
direction, or at or before in the reverse direction. This field is used to imple-
ment frame accurate trick play transitions that require a STOP command,
such as switching between forward and reverse play, as well as from
I-frame scan to normal playback.
The third argument is a flag that indicates to the decoder that it should en-
ter the PAUSE state immediately after displaying the first frame. This fea-
ture is required to implement a frame accurate single-step from the
opposite direction. See “Trick Play Techniques” on page 132 for more in-
formation.
As described in the state transition tables on page 118, the only states that
can be entered from IDLE are the FWDPLAY and BWDPLAY states. Once
in those states, the play direction is set and further transitions to SLOW,
PAUSE, STEP etc. can be done.
Confidential Mobilygen Corp. | 119

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
FLUSH

I-FRAME_PLAY

PAUSE

Command Q_AVD_CMD_FLUSH
ID 20

Arguments None

Return Code 0 = Failure
1 = Success

Return Values None
Valid States IDLE

Description
The FLUSH command is used just prior to the STOP command. The pur-
pose of the command is to clear out internal buffers which were causing
any bitstream sending to block.

Command Q_AVD_CMD_IFRAME_PLAY
ID 4

Arguments Number of frame times to display each I-frame

Return Code 0 = Failure
1 = Success

Return Values None
Valid States PLAY

Description

The I-FRAME_PLAY command is used to transition the firmware to a state
where only I-frames are decoded. All other frames are dropped. Each I-
frame is decoded and then displayed for a number of frame times as spec-
ified by the first argument of the command. Because only I-frames are de-
coded, the same command is used for both forward and reverse playback.
In order to transition to this state from IDLE, the System Host CPU must
first send the PLAY command, and then immediately send the
IFRAME_PLAY command before sending data.

Command Name Q_AVD_CMD_PAUSE
ID 3

Arguments None

Return Codes 0 = Failure
1 = Success

Return Values None

Valid States FWDPLAY, BWDPLAY, FWDSLOW, BWDSLOW,
FWDSTEP, BWDSTEP, FWDSCAN, BWDSCAN

Description
The PAUSE command is used to transition the state into either FORWARD
or REVERSE PAUSE. It is also entered automatically once a single-step
operation has been completed.
120 | Mobilygen Corp Confidential

Application Programming Interface H.264/ACC Decoder Interface Object
IFRAME_PAUSE

SLOW

Command Name Q_AVD_CMD_IFRAME_PAUSE
ID 19

Arguments None

Return Codes 0 = Failure
1 = Success

Return Values None

Valid States FWDPLAY, BWDPLAY, FWDSLOW, BWDSLOW,
FWDSTEP, BWDSTEP, FWDSCAN, BWDSCAN

Description

The IFRAME_PAUSE command differs from the PAUSE command in that
this command requests the AV decoder to enter the PAUSE state (either
forward or backward) when the next I-frame is being displayed. The state
of the AV decoder is not changed once this command is executed by the
firmware. Instead, the AV decoder generates the event
PAUSE_COMPLETE once the I-frame has been displayed and the
PAUSE state has been entered.

Command Name Q_AVD_CMD_SLOW
ID 5

Arguments [0] Speed

Return Codes 0 = Failure
1 = Success

Return Values None

Valid States
FWDPLAY, BWDPLAY, FWDSLOW, BWDSLOW,
FWDSTEP, BWDSTEP, FWDSCAN, BWDSCAN,
FWDPAUSE, BWDPAUSE

Description

The SLOW command is used to transition the state into either FORWARD
or REVERSE SLOW MOTION. It is also used to change the slow motion
speed once the SLOW MOTION state has been entered. The value of ar-
gument 0 is the inverse of the play speed such that a value of 3 is a 1/3
rate, 5 is 1/5, etc.
Confidential Mobilygen Corp. | 121

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
STEP

RESUME

SMOOTH_SCAN

Command Name Q_AVD_CMD_STEP
ID 6

Arguments None

Return Codes 0 = Failure
1 = Success

Return Values None

Valid States FWDPLAY, BWDPLAY, FWDSLOW, BWDSLOW,
FWDSCAN, BWDSCAN, FWDPAUSE, BWDPAUSE

Description

The STEP command is used to instruct the AV decoder to decode and dis-
play the next video frame and then automatically transition to either the
FWDPAUSE or BWDPAUSE state (depending upon the current playback
direction). The event PAUSE_COMPLETE is generated once this state
transition has been performed.

Command Name Q_AVD_CMD_RESUME
ID 7

Arguments None

Return Codes 0 = Failure
1 = Success

Return Values None

Valid States FWDSLOW, BWDSLOW, FWDSCAN, BWDSCAN,
FWDPAUSE, BWDPAUSE

Description
The RESUME command is used to transition the AV decoder back to the
FWDPLAY or BWDPLAY states in a smooth fashion while maintaining AV
synchronization.

Command Name Q_AVD_CMD_SMOOTH_SCAN
ID 8

Arguments [0] Speed

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States FWDSCAN, BWDSCAN, FWDPLAY, BWDPLAY

Description
The SMOOTH_SCAN command is used to perform smooth forward or re-
verse scans according to the speed specified in argument 0. Allowed
speeds are 2 and 4.
122 | Mobilygen Corp Confidential

Application Programming Interface H.264/ACC Decoder Interface Object
SET_AUDIO_STREAM

VIDEO_BUFFER_EMPTINESS

Command Name Q_AVD_CMD_SET_AUDIO_STREAM
ID 11

Arguments [0] Audio stream

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States Any

Description

The SET_AUDIO_STREAM command is used to change the audio decode
between allowed formats. It is implemented as a command rather than a
configuration parameter since it takes effect immediately.
The audio stream parameter can either be:
1 = PCM audio
2 = AAC audio

Command Name Q_AVD_CMD_VIDEO_BUFFER_EMPTINESS
ID 14

Arguments None

Return Codes 0 = Failure
1 = Success

Return Values [0] Video buffer emptiness in bytes
[1] Video buffer emptiness in access units

Valid States Any

Description

The VIDEO_BUFFER_EMPTINESS command is used by the System Host
CPU to query the firmware about the emptiness of the video buffer. The
firmware returns the emptiness in both bytes and access units (frames).
The System Host CPU can use these values to ensure that it does not
overflow the internal buffers during playback (thus triggering hardware flow
control). Refer to “Sending Encoded Bitstreams to the Decoder” on
page 113 for additional information.
Confidential Mobilygen Corp. | 123

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
AUDIO_BUFFER_EMPTINESS

VIDEO_DISPLAY_RECT

Command Name Q_AVD_CMD_AUDIO_BUFFER_EMPTINESS
ID 15

Arguments None

Return Codes 0 = Failure
1 = Success

Return Values [0] Audio buffer emptiness in bytes
[1] Audio buffer emptiness in access units

Valid States Any

Description

The AUDIO_BUFFER_EMPTINESS command is used by the System
Host CPU to query the firmware about the emptiness of the audio buffer.
The firmware returns the emptiness in both bytes and access units
(frames). The System Host CPU can use these values to ensure that it
does not overflow the internal buffers during playback (thus triggering
hardware flow control). Refer to “Sending Encoded Bitstreams to the De-
coder” on page 113 for additional information.

Command Name Q_AVD_CMD_VIDEO_DISPLAY_RECT
ID 17

Arguments
[0] Width
[1] Height
[2] X Offset
[3] Y Offset

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States Any

Description

The VIDEO_DISPLAY_RECT is used to set the video display area relative
to active video. A typical video display will be one of 720x480, 640x480, or
720x576. All typical is a X and Y offset of (0,0). However, the display rect-
angle can be used to achieve other effects such as the display of 640x480
on a 720x480 physical display by setting the rectangle to 640x480 with an
X offset of 40 and a Y offset of 0.
In a typical operation, the System Host CPU sets the display rectangle at
initialization time and does not change it.
The display rectangle supports generalized up-scaling but can downscale
only the following ratios: 480/576, ½, and ¼. For example, the ¼ can be
used to create a 160x120 thumbnail of a 640x480 image.
124 | Mobilygen Corp Confidential

Application Programming Interface H.264/ACC Decoder Interface Object
VIDEO_ZOOM

Command Name Q_AVD_CMD_VIDEO_ZOOM
ID 18

Arguments
[0] Source Size as a 16-bit fraction
[1] Source X Offset as a 16-bit fraction
[2] Source Y Offset as a 16-bit fraction

Return Codes 0 = Failure
1 = Success

Return Values None
Valid States Any

Description

The VIDEO_ZOOM is used to perform an arbitrary horizontal and vertical
crop of the source material and then scaled to fit the display rectangle. The
size, X offset, and Y offset are all specified as 16-bit fractions (so that
65536/2 is ½, 65536/4 is ¼ etc.) and specify the crop window.
The x and y coordinates of the crop window are similarly specified by the
X and Y offsets relative to the top left corner of the source. An X and Y off-
set of (0,0) means the crop window is positioned at the top-left, an X and
Y offset of (½, ¼) means that the crop window is positive at ½ the width
and ¼ the height from the top.
Confidential Mobilygen Corp. | 125

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10.6.8 Configuration Parameters

These parameters can only be set when the decoder interface object is in the IDLE state and take
effect on the next transition out of the IDLE state. The values assigned to the configuration pa-
rameters are persistent and are not reset by any state transition. They can only be changed by
subsequent configuration commands.

BITSTREAM_TYPE

BITSTREAM_SOURCE

AV_SYNCH_ENABLE

Parameter Q_AVD_CFG_BITSTREAM_TYPE
ID 4

Values 1 = Q_AVD_CFP_BITSTREAM_TYPE_ELEM_VIDEO
2 = Q_AVD_CFP_BITSTREAM_TYPE_QBOX

 States IDLE
Effective On the next AV decoder state transition out of IDLE.

Description
This parameter is used to configure the decoder demultiplexing unit before
bitstreams are sent to the decoder. This parameter must be setup when the
system is in an IDLE state.

Parameter Q_AVD_CFG_BITSTREAM_SOURCE
ID 5

Values 1 = Q_AVD_CFP_BITSTREAM_SOURCE_SISC_PUSH
2 = Q_AVD_CFP_BITSTREAM_SOURCE_SISC_PULL

 States IDLE
Effective On the next AV decoder state transition out of IDLE.

Description This parameter is used to select the bitstream transfer method. This pa-
rameter must be set in IDLE state.

Parameter Q_AVD_CFG_AV_SYNCH_ENABLE
ID 13

Values 0 or 1
 States IDLE

Effective On the next AV decoder state transition out of IDLE.
Description This parameter is used to enable or disable audio/video synchronization.
126 | Mobilygen Corp Confidential

Application Programming Interface H.264/ACC Decoder Interface Object
VIDEO_STC_OFFSET

VIDEO_OUTPUT_STANDARD

Parameter Q_AVD_CFG_VIDEO_STC_OFFSET
ID 14

Values Signed value representing 90 kHz ticks
 States IDLE

Effective On the next AV decoder state transition out of IDLE.

Description

This parameter allows the System Host CPU to program a fixed offset be-
tween the video and audio streams in order to compensate for variable de-
lays in the presentation datapath. For example, a system might capture
and scale the video output, creating a one video frame delay relative to the
audio. In this case, a negative offset of one frame (-3003 in NTSC) should
be programmed.

Parameter Q_AVD_CFG_VIDEO_OUTPUT_STANDARD
ID 15

Values 1 = Q_AVD_CFG_VIDEO_OUTPUT_STANDARD_NTSC
2 = Q_AVD_CFG_VIDEO_OUTPUT_STANDARD_PAL

 States IDLE
Effective On the next AV decoder state transition out of IDLE.

Description This parameter sets the video standard for the video output unit. Note that
the video standard for the input unit can be different.
Confidential Mobilygen Corp. | 127

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
VIDEO_DECODE_FRAMERATE

VOUT_SCALING_ENABLE

Parameter Q_AVD_CFG_DECODE_FRAMERATE
ID 16

Values 32-bit value consisting of two 16-bit fields. Bits [31:16] are the integer frame
rate and bits [15:0] are the fractional part.

 States IDLE
Effective On the next AV decoder state transition out of IDLE.

Description

This variable is used to control the video decoder's frame rate. In normal
full-frame rate video with audio, the frame rate is not used as the system is
synchronized by the audio timing (Audio Master). However, the frame rate
is needed whenever the system is running in Video Master mode, such as
trick play. Additionally, it is used by the PAL <-> NTSC conversion code to
do a smoother frame rate conversion than can be achieved solely by using
audio or video synchronization.
The frame rate is set using a 16-bit integer and a 16-bit fractional compo-
nent. The two 16-bit values are sent as a single 32-bit configuration param-
eter. The upper 16 bits are the integer component and the lower 16 bits are
the fractional. Consider the following examples:

Parameter Q_AVD_CFG_VOUT_SCALING_ENABLE
ID 17

Values Setting to 1 enables the output scaler, setting to 0 disables it.
 States Any

Effective Immediately.

Description

This variable is used to enable or disable the video output scaler. If the
scaler is enabled, it will automatically resize the decoded video to fit the
display rectangle. Note that upscaling is arbitrary in that any smaller image
size can be fit to the display rectangle, but downscaling is only supported
for fixed ratios. These fixed ratios are 720 to 640 horizontally and 576 to
480 vertically.

Frame Rate in Hz Value

30.0 0x1E0000
29.97 0x1DF851 (equivalent to 30000/1001)
25.0 0x190000
12.5 0xC8000
128 | Mobilygen Corp Confidential

Application Programming Interface H.264/ACC Decoder Interface Object
10.6.9 Events

Q_AVD_EV_VIDEO_DECODER_ERROR

Q_AVD_EV_AUDIO_DECODER_ERROR

Q_AVD_EV_VIDEO_FRAME_DECODED

Q_AVD_EV_AUDIO_FRAME_DECODED

Q_AVD_EV_VIDEO_PRESENTATION_COMPLETE

Event Q_AVD_EV_VIDEO_DECODER_ERROR
ID 0x20003

Payload None

Description This event is generated once for every video decoder error detected by the
firmware.

Event Q_AVD_EV_AUDIO_DECODER_ERROR
ID 0x20004

Payload None

Description This event is generated once for every audio decoder error detected by the
firmware.

Event Q_AVD_EV_VIDEO_FRAME_DECODED
ID 0x20001

Payload None
Description This event is generated once for every video frame decoded.

Event Q_AVD_EV_AUDIO__FRAME_DECODED
ID 0x2000A

Payload None
Description This event is generated once for every audio frame decoded.

Event Q_AVD_EV_VIDEO_PRESENTATION_COMPLETE
ID 0x2000E

Payload None

Description This event is generated once the last frame in the video stream has been
decoded and displayed.
Confidential Mobilygen Corp. | 129

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Q_AVD_EV_AUDIO_PRESENTATION_COMPLETE

Q_AVD_EV_PAUSE_COMPLETE

Q_AVD_EV_START_VIDEO_PRESENTATION

Event Q_AVD_EV_AUDIO_PRESENTATION_COMPLETE
ID 0x2000F

Payload None

Description This event is generated once the last frame in the audio stream has been
decoded and sent from the output unit.

Event Q_AVD_EV_PAUSE_COMPLETE
ID 0x20007

Payload None

Description

This event is generated when the MG1264 Codec transitions to the
PAUSE state. The first way is through the PAUSE command. The second
is through the System Host CPU issuing a SINGLESTEP command fol-
lowed by the firmware completing the automatic state transition to PAUSE
(forward or backward). The third way this event can be generated is
through the IFRAME_PAUSE command which delays the AV decoder
transitioning to PAUSE until an I-frame is being displayed. The fourth way
is PLAY with the pause trigger set. In all cases, this event is generated
when the AV decoder completes the transition to PAUSE (forward or back-
ward).

Event Q_AVD_EV_START_VIDEO_PRESENTATION
ID 0x20005

Payload None

Description
This event is generated once the first video from of a stream has been dis-
played. Until this event has been received, it can be assumed that the vid-
eo display contains the last frame of the previous stream, or black if no
streams have been played.
130 | Mobilygen Corp Confidential

Application Programming Interface H.264/ACC Decoder Interface Object
10.6.10 Status Block

The AV decoder object maintains a status block that can be polled by the System Host CPU at
any time. The contents of the block are not synchronized with any event, and there is no indi-
cation from the firmware that an update has, or will occur.

typedef struct {
uint32 videoFramesDecoded;
uint32 audioFramesDecoded;
uint32 videoDecoderErrors;
uint32 audioDecoderErrors;
uint16 videoBufferEmptiness;
uint32 videoBufferAccessUnits;
uint16 audioBufferEmptiness;
uint32 audioBufferAccessUnits;
uint32 videoPresentationTime;
uint32 audioPresentationTime;
uint32 avsyncVideoDrops;
uint32 avsyncVideoRepeats;

} AVDecoderStatusBlock;

The fields in the status block are valid during audio or video decoding and presentation, and are
reset when the AV decoder exits the IDLE state. Therefore, they remain valid after the STOP
command has been issued, and represent the state of the AV decoder just prior to the STOP com-
mand being processed.

videoFramesDecoded

This field contains the number of video frames decoded since the last PLAY command.

audioFramesDecoded

This field contains the number of audio frames decoded since the last PLAY command.

videoDecoderErrors

This field contains the number of video decoding errors since the last PLAY command.

audioDecoderErrors

This field contains the number of audio decoding errors since the last PLAY command.

videoBufferEmptiness

This field contains the emptiness (total size-fullness) of the video bit buffer.

videoBufferAccessUnits

This field contains the number of available video buffer access units.

audioBufferEmptiness

This field contains the emptiness (total size-fullness) of the audio bit buffer.

audioBufferAccessUnits

This field contains the number of available audio buffer access units.
Confidential Mobilygen Corp. | 131

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
videoPresentationTime

This field contains the time of the most recently presented video access unit expressed in 90
kHz ticks.

audioPresentationTime

This field contains the time of the most recently presented audio access unit expressed in 90
kHz ticks.

avsyncVideoDrops

This field contains the number of video frames which were dropped (not displayed) due to au-
dio or video synchronization requirements.

avsyncVideoRepeats

This field contains the number of video frames which were repeated due to audio or video syn-
chronization requirements.

10.6.11 Trick Play Techniques

Implementing a complete set of trick play features requires careful system design of the System
Host CPU code. The techniques used to implement these features can be divided into four cat-
egories:

1. “Forward Smooth Trick Play”

2: “I-Frame Trick Play”

3: “Reverse Trick Play”

4: “Switching Between Forward and Reverse Trick Play”

Forward Smooth Trick Play

Implementing forward trick play is the simplest of the four categories since it is most similar to
linear playback where the audio or video data is sent to the MG1264 Codec in decode order.
The only exception is doing I-frame only scans with jumps and that is dealt with in section “I-
Frame Trick Play” on page 133.

Forward trick play modes are pause, singlestep, slow-motion, and scan. In all of these cases, the
bitstream data is sent to the MG1264 Codec as if the MG1264 Codec is playing the data at reg-
ular speed. However, in trick play, the decoder either drops or repeats frames at various defined
intervals in order to achieve the trick play effect. Pause, singlestep, and slow-motion place no
additional burden on the System Host CPU since the data is being processed by the MG1264
Codec at a rate slower than real-time. The hardware flow control mechanism ensures that data
is sent to the System Host CPU at the required rates, and the System Host CPU can continue to
use the same data streaming algorithms that are used for linear playback.

Forward smooth scan is the most difficult of the trick modes since the decoder must drop frames
in order to achieve a speed-up. However, since the video bitstream consists entirely of reference
pictures (either I-frames or P-frames), the decoder must decode each picture of the GOP. The
net effect is that the MG1264 Codec is limited to providing a 4x smooth scan. Also, note that
the System Host CPU must be able to deliver the data to the MG1264 Codec at a 4x rate, mean-
ing a 4 Mbit/sec stream is sent at 16 Mbit/sec.
132 | Mobilygen Corp Confidential

Application Programming Interface H.264/ACC Decoder Interface Object
All smooth forward trick play returns to the FWDPLAY state through the RESUME command.
Audio or video synchronization is maintained across the trick play boundary without frame
drops or repeats. The System Host CPU can go directly to an IDLE state by issuing a STOP
command.

Note that the trick play states of SINGLESTEP, FWDSCAN, and FWDSLOW cannot be
reached directly from the IDLE state. However, you can do slow and scan from IDLE by issuing
a PLAY command followed by the SLOW or SCAN command BEFORE sending any bitstream
data. You can perform a SINGLESTEP from IDLE by issuing the PLAY command with the
pause trigger set (argument 2).

I-Frame Trick Play

An important limitation of smooth forward and reverse scan is that the System Host CPU must
send data to the decoder at a rate equal to the scan rate multiplied by the video bitrate. These
data rates from the System Host CPU may not be achievable for moderate-to-high video bi-
trates, making a 4x smooth scan impossible.

An alternative trick play technique, which is often used in DVD players, is to show I-frames
only at the start of a GOP and to jump GOPs. Almost any rate of forward scan can be achieved
by changing the jump distance between frames, however, these high rates come at the expense
of smoothness.

A slight variation on this technique is to show a small number of frames at the start of the GOP
in addition to the I-frame. These extra frames can provide the user with additional context be-
yond a still frame, and can still achieve high rates of scan.

The decoder state machine does not allow the RESUME command to be used in I-frame trick
play to return to linear playback. This is because it is assumed that the System Host CPU is
sending discontinuous bitstream data. Therefore, the only way out of I-frame trick play is
through the STOP command. Once the STOP command is issued, the internal buffers of the de-
coder are flushed and playback can begin with the PLAY command.

However, it is important that the System Host CPU does not simply restart playback at the last
I-frame sent to the decoder. Because the System Host CPU is sending only I-frames, a tremen-
dous number of frames (and by extension, playback time) will be in the video bit buffer when
the STOP command is issued. If data streaming resumed from the same point, the effect to the
user would be a very large jump forward in time.

Instead, the System Host CPU should query the decoder for the current presentation time (by
reading the presentationTime field in the AC decoder status block), and restart playback from
the nearest GOP boundary matching that time.

Reverse Trick Play

Reverse trick play presents a challenge for the System Host CPU since it must send GOPs to
the decoder in reverse order. Note that the data inside the GOP is sent in the traditional forward
direction, it is only the order of the GOPs that must be reversed.

Reversing the order of the GOPs must be done using some type of random access information
that the System Host CPU maintains. Typically, this is the random access information found in
MP4 files, but can take the form of any metadata that the System Host CPU wishes to store.

No additional signaling is required by the System Host CPU when sending the GOPs in reverse.
The System Host CPU must simply send the data in reverse GOP order.
Confidential Mobilygen Corp. | 133

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Switching Between Forward and Reverse Trick Play

As can be seen from the State Transition Matrices, the only way to transition between forward
and reverse playback is through the IDLE state, which means issuing a STOP command. This
restriction makes it somewhat more difficult to implement common user operations such as for-
ward singlestep, followed immediately by reverse singlestep. It is up to the System Host CPU
to transition the decoder from IDLE to a trick play state in such a way that the user sees a seam-
less display of frames with no jumps or extraneous frames being displayed.

Transitioning between forward and reverse trick play requires the System Host CPU to do three
general operations. The first step is to issue the STOP command to force the IDLE state. The
second operation is to query the current presentation time from the decoder. Note that this pre-
sentation time can refer to any type of frame, either I-frame or P-frame. The third step is for the
System Host CPU to start trick play in the other direction at the previous frame in the case of a
forward to reverse switch, or to the next frame in the case of a reverse to forward switch.

Example: Forward slow-motion to reverse slow-motion proceeded by forward play:

1. Host receives user event signaling forward slow-motion

2: Host sends SLOW command

3: Host receives user event signaling reverse slow

4: Host sends the STOP command

5: Host reads the current video presentation time by reading the videoPresentationTime
field in the AV decoder status block.

6: Host issues PLAY command indicating reverse direction, the current presentation time
and with no pause trigger

7: Host issues SLOW command

8: Host identifies the byte position of the GOP which contains the current presentation
time

9: Host sends the data starting at the GOP found in step 8

Example: Forward single-step to reverse single-step proceeded by forward play:

1. Host receives user event signaling forward single-step

2: Host sends the SINGLESTEP command

3: Host waits for and receives the PAUSE_COMPLETE event

4: Host receives user event signaling reverse single-step

5: Host sends the STOP command

6: Host reads the current video presentation time by reading the videoPresentationTime
field in the AV decoder status block

7: Host issues a PLAY command indicating the reverse direction, the current presentation
time and with the pause trigger set

8: Host identifies the byte position of the GOP that contains the current presentation time

9: Host sends the data starting at the GOP identified in step 8.

10: Host waits for and receives the PAUSE_COMPLETE event.
134 | Mobilygen Corp Confidential

Application Programming Interface H.264/AAC Encoder Interface Object
10.7 H.264/AAC Encoder Interface Object

10.7.1 Overview

The H.264/AAC encoder interface object is responsible for controlling both the H.264 and the
AAC encoders as a combined entity. However, the object is sufficiently flexible to encode vid-
eo-only or audio-only streams, in both multiplexed and elementary formats.

10.7.2 Logical View of the AV Encoder

An idealized view of the encoder datapath in coprocessor mode is shown in Figure 10-7.

Figure 10-7 Idealized Encoder Datapath

The H.264/AAC encoder object takes in raw audio and video streams and produces a com-
pressed bitstream. The object contains three logical functions

• H.264 Encoding

• AAC Encoding

• Multiplexing.

10.7.3 AV Encoder Features

Real-Time Encoding with Spatial and Temporal Scaling

The MG1264 Codec can perform real-time encode AVC raw video at resolutions of up to
800x600 at 30 frames per second, and can encode AAC audio at sampling rates of up to 48 kHz
at 16-bits per sample.

In addition, the video input block supports both spatial and temporal scaling. The horizontal or
vertical resolutions can be halved independently to support resolutions such as 320x480,
352x480, 720x240, 720x576, 320x240, 352x240, and 352x288. Additionally, the video frame
rate can be decimated in half to create 15 fps sequences.

Digital Audio

Digital Video

Bitstream

Digital Audio

Digital Video

H.264/ACC Decoder
(Digital Bypass)

H.264
Encoder

Multiplexer

Video
Input

H.264/ACC Encoder Block

ACC
Encoder

Audio
Input
Confidential Mobilygen Corp. | 135

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Multiple Encoder Operational Profiles

The AVC encoder contains a number of algorithmic “tools” that are used to achieve either high-
er video quality or lower video bitrates. These tools come pre-configured in three sets of oper-
ational profiles. These profiles correspond to low, medium, and high bitrates. Low bitrates are
considered to be <= 1.5 Mbps, medium are 1.5 to 3.5 Mbps, and high is 3.5 Mbps or greater.

Once an operational profile is set, the System Host CPU is free to select any video bitrate. The
rate control algorithms in the MG1264 Codec will then use the selected toolset to match these
bitrate requirements.

Controlling the Video Bitrate

The encoder allows the System Host CPU to specify an average video bitrate and runs three
concurrent algorithms that are used to control the actual bitrate over time. These algorithms are
short-term bitrate control, long-term bitrate control, and peak quality control. Together, these
algorithms work together to ensure that internal buffers are not overflowed, that the target file
size is achieved, and bits are not wasted unnecessarily.

Field or Frame Video Encoding

The video input to the MG1264 Codec can be either progressively-scanned or interlace-
scanned. In the case of progressive-scanned video, the encoder will produce a video sequence
consisting entirely of frame pictures. However, if the video source is interlaced, the encoder will
adaptively select between frame or field pictures depending upon the amount of motion in each
frame. Adaptively choosing the picture coding type produces an important coding gain. This
type of operation is called “Picture Adaptive Field/Frame”.

10.7.4 Receiving Encoded Bitstreams from the Encoder

Bitstream Transfer

The encoder produces a bitstream that is transferred between the firmware and the System Host
CPU through commands, events, and memory transfers using the external memory interface in
the MG1264 Codec Host Interface. Bitstream data is sent to the MG1264 Codec Host Interface
in discrete “bitstream blocks”. Each bitstream block contains one access unit or QBox. The
firmware maintains a set of bitstream blocks that are managed as a circular queue.

Figure 10-8 Circular Buffer Management of Bitstream Blocks

The availability of a new bitstream block is signaled by the BITSTREAM_BLOCK_READY
event. In order for the System Host CPU to reduce the event rate, up to 6 bitstream blocks can
be sent per event. The number of blocks that are sent per event is set using the AV encoder con-
figuration parameter NUMBLOCKSPEREVENT.

System
Host
CPU

MG1264
Codec

Full
Block

Empty
Block

BITSTREAM_BLOCK_READY
Event

BITSTREAM_BLOCK_DONE
Command

Full
Block

Full
Block
136 | Mobilygen Corp Confidential

Application Programming Interface H.264/AAC Encoder Interface Object
When the encoder fills an event with the required number of bitstream blocks, the firmware sig-
nals to the System Host CPU that the new blocks are available through the
BITSTREAM_BLOCK_READY event. The event payload contains the number of blocks, the
start address of each block, and the size. The event also contains information about the type of
bitstream; either AVC elementary video, AVC elementary audio, MP4, or QBox. In the case of
QBox data, each bitstream block event can contain a mix of audio and video data. Note that
once the System Host CPU has sent the FLUSH command, each bitstream block is sent with its
own event (equivalent to setting NUMBLOCKSPEREVENT to 1) to ensure a proper bitstream
flush.

When the System Host CPU receives the BITSTREAM_BLOCK_READY event, it must read
the bitstream data from the MG1264 Codec memory and transfer it to the System Host CPU’s
local memory. This is done using the QHAL function qhalem_read_bytes. Do not use the func-
tion qhalem_read_words function as that function corrects for endianess.

Once the System Host CPU is through reading the bitstream data, it must send a command to
the firmware to release the memory back to the encoder. This command is the
BITSTREAM_BLOCK_DONE command, and has as arguments, the same information in the
event (start address and size of the access unit). The firmware interprets the block address and
determines if the command is referring to a video or audio block.

As a further optimization for QBox streams, the System Host CPU is only required to issue a
BITSTREAM_BLOCK_DONE command for the last block of each type in the event. For ex-
ample, if there are six blocks in the event consisting of three video blocks and three audio
blocks, the System Host CPU can issue only one BITSTREAM_BLOCK_DONE for the last
video block, and one BITSTREAM_BLOCK_DONE for the last audio block. This operation
requires the System Host CPU to parse the contents of each QBox to determine if the contents
are audio or video, although presumably this is already being done in order to multiplex the bit-
stream data.

The event, Q_AVE_EV_BITSTREAM_BLOCK_READY, is represented by the following
structure:

typedef struct
{

CONTROLOBJECT_IDcontrolObjectId;
EVENT_IDeventId;

unsigned inttimestamp;
unsigned inttypeAndNumBlocks;
unsigned intaddress0;
unsigned intsize0;
unsigned intaddress1;
unsigned intsize1;
unsigned intaddress2;
unsigned intsize2;
unsigned intaddress3;
unsigned intsize3;
unsigned intaddress4;
unsigned intsize4;
unsigned intaddress5;
unsigned intsize5;

} STRUCT_Q_AVE_EV_BITSTREEAM_BLOCK_READY;
Confidential Mobilygen Corp. | 137

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
The field typeAndNumBlocks consists of two 16-bit fields. The upper 16 bits contain the bit-
stream type, and the lower 16 bits contain the number of blocks in the event. Bitstream types
are the same as the parameter value set in the BITSTREAM_TYPE configuration parameter.

The command Q_AVE_CMD_BITSTREAM_BLOCK_DONE is created by copying the fields
frameAddress and frameSize from the event structure. For example, given a pointer to the event
block event:

COMMAND cmd;
cmd.controlObjectId = AVENCODER_CTRLOBJ_ID;
cmd.opcode = Q_AVE_CMD_BITSTREAM_BLOCK_DONE;
cmd.arguments[0] = event->frameAddress;
cmd.arguments[1] = event->frameSize;

The firmware can optionally pad each elementary stream sample (AVC video frame or AAC
raw data block) to 4-byte alignment. This alignment is done using a private SEI NAL unit in
the AVC and padding bits in the AAC. Creating a stream with 4-byte alignment can simplify
System Host CPU multiplexing on systems that cannot do misaligned transfers on their 16-bit
bus.

Bitstream Timing Information

Each video and audio frame is assigned a timestamp using an internal 90 kHz clock starting at
time 0. This timestamp is present in the QBox header, but is not available in elementary video
mode. The timestamps are separated by the sample duration, which is the reciprocal of the
frame rate expressed in 90 kHz ticks:

• For audio frames, this corresponds to (samples per frame/sampling rate) * 90000

• For 24 kHz, this is (1024/24000) * 90000 = 3840

• For 48 kHz it is (1024/48000) * 90000 = 1920

• For 32 kHz it is (1024/32000) * 9000 = 2880

NTSC video frames use timestamps using a frame time of 30000/1001 which is approximately
29.97. In terms of 90 kHz ticks, this is a frame time of 3003 ticks. PAL video frames use 3600
ticks per frame according to their 25 Hz frame rate.

10.7.5 Controlling the Video Bitrate

The MG1264 Codec runs multiple concurrent algorithms that are used to control the video bi-
trate. All of these algorithms attempt to manage the bitrate and quality of the video stream so
that they do not violate certain constraints. These constraints can be selectively enabled or dis-
abled, and can run concurrently.

Bitstream-Buffer Constraint

The bitstream buffer algorithm ensures that the bitrate does not overflow the memory buffers
on both the MG1264 Codec and the System Host CPU. The algorithm is essentially a leaky-
bucket model that prevents overflow. The fill-rate of the bucket is the actual bitrate of the video
bitstream, which over the long-term should match the target average bitrate but can vary over
the short-term. The drain-rate of the bucket is set by the System Host CPU as is the size of the
buffer in bits. The bucket accumulates bits whenever the short-term fill-rate exceeds the drain-
rate. The bucket loses bits whenever the short-term fill-rate is smaller than the drain-rate.

In storage applications (writing the bitstream to a Flash card for instance), the drain rate of the
bucket should be set to the maximum sustained transfer rate of the System Host CPU from the
138 | Mobilygen Corp Confidential

Application Programming Interface H.264/AAC Encoder Interface Object
MG1264 Codec's memory to the Flash card. Often this rate is significantly higher than the av-
erage bitrate of the video.

Note that the constraint can take a buffer size as a parameter that does not match the actual in-
ternal buffer of the MG1264 Codec (which is 16 Mbits). The buffer size can be set larger if there
is buffer space available on the System Host CPU, or it can be set smaller if the System Host
CPU wishes to constrain the bitrate swings. Similarly, the bucket drain-rate can be set smaller
than the actual transfer rate in order to reduce the bitrate swings.

Peak Video Quality Constraint

The peak video quality algorithm attempts to save bits on very easy-to-code scenes by setting
a maximum image quality (as measured in dB). The maximum measurable SNR is 48.13, which
corresponds to a single bit out of 8 bits (10log(2552)). Therefore, setting a maximum SNR of
49 or greater is essentially the same as disabling the constraint. However, by assuming a max-
imum SNR of less than 48, the algorithm will prevent the bitrate from being increased once the
SNR has reached the specified level. This has the net effect of saving bits for later use in more
difficult scenes.

The System Host CPU should set the peak video quality to a very high level to ensure that qual-
ity is not compromised on typical video. Therefore, a value of 43 or greater is recommended.

File-Size Constraint

The file size constraint algorithm ensures that the actual file size matches the target file size (as
measured by the average bitrate multiplied by time) within a certain margin that is specified by
the System Host CPU. This margin is both positive and negative. For example, the System Host
CPU could request that the actual file size not exceed the target by 12 Mbits (1.5 MBytes).

Note that the actual file size can be lower than the specified margin if the peak video quality
constraint is being used. In the case of very easy-to-code scenes where the SNR exceeds the
maximum SNR, the file size constraint will not attempt to force the bitrate higher.

10.7.6 Object ID

The H.264/AAC encoder object ID is 0x3.

10.7.7 State Machine

States

The H.264/AAC encoder object has the following states:

• Q_AVE_ST_IDLE: This is the startup state for the encoder. When in this state, the en-
coder is reset such that the first frame it generates will be an I-frame.

• Q_AVE_ST_ENCODING: This state performs continuous audio or video encoding with
bitstream output to the System Host CPU.

• Q_AVE_ST_PAUSE: This state does not reset any of the encoder buffers, but prevents
the encoder from creating new bitstream data. When the system returns to the ENCOD-
ING state, the first frame will be an I-frame.

• Q_AVE_ST_FLUSHING: This state is an intermediate state between
Q_AVE_ST_ENCODING and Q_AVE_ST_IDLE. Unlike the decoder, the encoder can-
not transition directly to IDLE from a non-IDLE state because the encoded data needs to
be flushed. When this state is entered through the FLUSH command, the encoder stops
Confidential Mobilygen Corp. | 139

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
creating new bitstream data. The encoder remains in this state until the System Host CPU
acknowledges the receipt of the last bitstream block, after which the encoder automatical-
ly transitions to IDLE and sends the Q_AVE_EV_FLUSH_COMPLETE event.

State Transition Matrix

This matrix shows the commands that can be used to transition from one state to another. Note
that several transitions are impossible and indicated by a (—) in the cell. The starting state is
shown in the left column, and the destination state is shown along the top row.

1. This transition happens automatically when the bitstream has been flushed from the internal memory buffers to the
System Host CPU.

10.7.8 Commands

FLUSH

RECORD

State IDLE ENCODING PAUSE FLUSHING

IDLE — RECORD — —
ENCODING — — PAUSE FLUSH

PAUSE — RESUME — FLUSH
FLUSHING (1) — — —

Command Name Q_AVE_CMD_FLUSH
ID 1

Arguments None

Return Codes
0 = Failure
1 = Success

Return Values None
Valid States Q_AVE_ST_ENCODING and Q_AVE_ST_PAUSE

Description
This command changes the encoder’s state to Q_AVE_ST_FLUSHING
and stops the encoder from generating new bitstream data. Once transi-
tioned to Q_AVE_ST_IDLE, the Q_AVE_EV_FLUSH_COMPLETE event
is generated.

Command Name Q_AVE_CMD_RECORD
ID 2

Arguments None

Return Codes
0 = Failure
1 = Success

Return Values None
Valid States Q_AVE_ST_IDLE

Description This command changes the encoder’s state to Q_AVE_ST_ENCODING
and starts generating encoded data.
140 | Mobilygen Corp Confidential

Application Programming Interface H.264/AAC Encoder Interface Object
PAUSE

RESUME

VIDEO_CAPTURE_RECT

Command Name Q_AVE_CMD_PAUSE
ID 3

Arguments None

Return Codes
0 = Failure
1 = Success

Return Values None
Valid States Q_AVE_ST_ENCODING
Description This command changes the encoder’s state to Q_AVE_ST_PAUSE.

Command Name Q_AVE_CMD_RESUME
ID 4

Arguments None

Return Codes
0 = Failure
1 = Success

Return Values None
Valid States Q_AVE_ST_PAUSE

Description
This command changes the encoder’s state back to
Q_AVE_ST_ENCODING and starts generating encoded audio or video
data.

Command Name Q_AVE_CMD_VIDEO_CAPTURE_RECT
ID 20

Arguments
[0] Rectangle width
[1] Rectangle height
[2] Rectangle X offset
[3] Rectangle Y offset

Return Codes
0 = Failure
1 = Success

Return Values None
Valid States All

Description

This command changes the video input module's capture rectangle. This
rectangle is relative to the start of active video and can be used to crop part
of the input (no scaling is done). Typical configurations will have the X and
Y offsets set to (0x0), and the capture rectangle set to one of 720x480,
720x576, or 640x480. The rectangle is typically set at initialization time,
but it can be used if the sensor is reconfigured to do VGA or QVGA for ex-
ample.
Confidential Mobilygen Corp. | 141

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
BITSTREAM_BLOCK_DONE

RC_BUFFER_MODEL

Command Name Q_AVE_CMD_BITSTREAM_BLOCK_DONE
ID 5

Arguments 0 = Block address
1 = Block size

Return Codes
0 = Failure
1 = Success

Return Values None
Valid States All

Description
This command indicates to the firmware that a specific bitstream block has
been read by the System Host CPU and is now free to be overwritten by
new data. The address and data implicitly indicate to the firmware whether
the bitstream block is an audio or video block.

Command Q_AVE_CMD_RC_BUFFER_MODEL
ID 23

Arguments
[0] 1 to enable, 0 to disable
[1] Buffer size in bits
[2] Buffer drain rate

Return Code 0 = Failure
1 = Success

Return Values None
Valid States Idle

Description

This command changes the video bitrate control parameters for the buffer
model. The System Host CPU can enable or disable the constraint and can
change the size and drain-rate of the buffer. For storage applications, the
buffer drain rate is typically equal to the maximum sustained rate at which
data can be stored to the memory device. As the transfer rate increases,
the harder it is to fill the buffer and therefore, the higher bitrate swings can
be.
The values set by this command are reset by setting the
VENC_OPERATIONAL_MODE configuration parameter.
142 | Mobilygen Corp Confidential

Application Programming Interface H.264/AAC Encoder Interface Object
RC_FILE_SIZE

RC_SNR_LIMIT

Command Q_AVE_CMD_RC_FILE_SIZE
ID 22

Arguments [0] 1 to enable, 0 to disable
[1] Maximum file size deviation in bits

Return Code 0 = Failure
1 = Success

Return Values None
Valid States Idle

Description

This command changes the video bitrate control's parameters for manag-
ing file size. The System Host CPU can enable or disable this constraint
and can control how tightly the MG1264 Codec controls the bitrate. When
enabled, the algorithm will try to control the actual file size from the target
file size to a maximum deviation specified in this command. This deviation
applies to both positive and negative sizes (bigger or smaller file sizes).
Note that the actual file size can be smaller than the specified deviation if
the maximum SNR constraint is enabled and very easy content (low-bi-
trate) is being encoded.
The values set by this command are reset by setting the
VENC_OPERATIONAL_MODE configuration parameter.

Command Q_AVE_CMD_RC_SNR_LIMIT
ID 24

Arguments
[0] 1 to enable, 0 to disable
[1] Maximum SNR in dB

Return Code
0 = Failure
1 = Success

Return Values None
Valid States Idle

Description

This command changes the video bitrate control parameters for managing
peak quality. Any SNR value greater than or equal to 49 is essentially in-
finity. It is recommended to use a value greater than or equal to 43.
The values set by this command are reset by setting the
VENC_OPERATIONAL_MODE configuration parameter.
Confidential Mobilygen Corp. | 143

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10.7.9 Configuration Parameters

These parameters can only be set when the encoder interface object is in an IDLE state and takes
effect on the next transition out of the IDLE state. The values assigned to the configuration pa-
rameters are persistent and are not reset by any state transition. They can only be changed by
subsequent configuration commands.

BITSTREAM_TYPE

NUMBLOCKSPEREVENT

AV_SELECT

Parameter Q_AVE_CFG_BITSTREAM_TYPE
ID 1

Value 1 = Q_AVE_CFP_BITSTREAM_TYPE_ELEM_VIDEO
2 = Q_AVE_CFP_BITSTREAM_TYPE_QBOX

 States IDLE
Effective On the next AV encoder state transition out of IDLE.

Description
This parameter is used to configure the encoder multiplexing unit before
bitstreams are sent to the System Host CPU. This parameter must be set-
up when the system is in the IDLE state.

Parameter Q_AVE_CFG_NUMBLOCKSPEREVENT
ID 56

Value 1 - 6
States IDLE

Effective On the next AV encoder state transition out of IDLE

Description This parameter is used to configure the number of bitstream blocks that are
sent by the encoder per event.

Parameter Q_AVE_CFG_ENC_AV_SELECT
ID 18

Value
1 = Q_AVE_CFP_ENC_AV_SELECT_AV
2 = Q_AVE_CFP_ENC_AV_SELECT_VIDEO_ONLY
3 = Q_AVE_CFP_ENC_AV_SELECT_AUDIO_ONLY

Valid States IDLE
Effective On the next AV encoder state transition out of IDLE

Description This parameter selects either video-only encoding, audio-only encoding, or
audio and video encoding.
144 | Mobilygen Corp Confidential

Application Programming Interface H.264/AAC Encoder Interface Object
VENC_BITRATE

AENC_ BITRATE

VIN_PROG_SOURCE

Parameter Q_AVE_CFG_VENC_BITRATE
ID 21

Value Positive integer in bits per second
Valid States IDLE

Effective On the next AV encoder state transition out of IDLE

Description

This parameter selects the long-term bitrate of the encoded video stream.
The encoder will attempt to meet this bitrate constraint over 90 second in-
tervals.
The values set by this command are reset by setting the
VENC_OPERATIONAL_MODE configuration parameter.

Parameter Q_AVE_CFG_AENC_BITRATE
ID 35

Value Positive integer in bits per second
Valid States IDLE

Effective On the next AV encoder state transition out of IDLE
Description This parameter selects the long-term bitrate of the encoded audio stream.

Parameter Q_AVE_CFG_VIN_PROG_SOURCE

Value 0 = Interlace video input
1 = Progressive video input

ID 17
Valid States IDLE

Effective On the next AV encoder state transition out of IDLE

Description

This parameter indicates to the video encoder whether the video capture
unit is receiving progressively-scanned video or interlace-scanned video.
If the source is progressive, then only video frame pictures will be created.
If the source is interlaced, then the VENC_FIELD_CODING parameter
controls the picture coding type.
Confidential Mobilygen Corp. | 145

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
VENC_FIELD_CODING

VIDEO_INPUT_STANDARD

VENC_GOP_SIZE

Parameter Q_AVE_CFG_VENC_FIELD_CODING
ID 34

Value
1 = Q_AVE_CFP_VENC_FIELD_CODING_FIELD
2 = Q_AVE_CFP_VENC_FIELD_CODING_FRAME
3 = Q_AVE_CFP_VENC_FIELD_CODING_ADAPTIVE

Valid States IDLE
Effective On the next AV encoder state transition out of IDLE

Description

In the case where the video source is interlaced (as indicated by the con-
figuration variable VIN_PROG_SOURCE), this variable controls the pic-
ture coding type. The System Host CPU can select between all frame
pictures, all field pictures, or adaptively select between field or frame pic-
tures based upon the amount of motion observed in the two fields.
The values set by this command are reset by setting the
VENC_OPERATIONAL_MODE configuration parameter.

Parameter Q_AVE_CFG_VIDEO_INPUT_STANDARD
ID 51

Value 1 = Q_AVE_CFP_VIDEO_INPUT_STANDARD_NTSC
2 = Q_AVE_CFP_VIDEO_INPUT_STANDARD_PAL

Valid States IDLE
Effective On the next AV encoder state transition out of IDLE

Description
This parameter selects the video input standard, either NTSC or PAL. The
System Host CPU must also set the correct capture rectangle using the
VIDEO_CAPTURE_RECT command.

Parameter Q_AVE_CFG_VENC_GOP_SIZE
ID 24

Value 32-bit unsigned integer
Valid States IDLE

Effective On the next AV encoder state transition out of IDLE

Description

This parameter sets the GOP size of the encoded video stream. The de-
fault value is 15 which means the GOP consists of one I-frame and 14 P-
frames. A value of 1 indicates an all I-frame stream, and a value of 0 indi-
cates a stream that consists of a single I-frame followed by P-frames.
The values set by this command are reset by setting the
VENC_OPERATIONAL_MODE configuration parameter.
146 | Mobilygen Corp Confidential

Application Programming Interface H.264/AAC Encoder Interface Object
VIN_FRAMERATE_DECIMATION

VIN_DECIMATION_H

VIN_DECIMATION_V

Parameter Q_AVE_CFG_VIN_FRAMERATE_DECIMATION
ID 32

Value 1 or 2
Valid States IDLE

Effective On the next AV encoder state transition out of IDLE

Description

This parameter sets the frame rate decimation ratio for the video input. If
the decimation rate is 1, then no frame rate decimation is done. If the value
is 2, then the frame rate is decimated by taking every other video frame.
The values set by this command are reset by setting the
VENC_OPERATIONAL_MODE configuration parameter.

Parameter Q_AVE_CFG_VIN_DECIMATION_H
ID 13

Value 1 or 2
Valid States IDLE

Effective On the next AV encoder state transition out of IDLE

Description

This parameter sets the horizontal decimation ratio for the input stream. If
the decimation ratio is 1, then no scaling is done and the encoded pictures
will have the width of the VIDEO_CAPTURE_RECT. If the ratio is 2, then
the video is horizontally downscaled by a factor of 2 and to the nearest mul-
tiple of 16. For example, 640 pixel-wide video is downscaled to 320 wide,
and 720 wide video is downscaled to 352 pixels.
The values set by this command are reset by setting the
VENC_OPERATIONAL_MODE configuration parameter.

Parameter Q_AVE_CFG_VIN_DECIMATION_V
ID 14

Value 1 or 2
Valid States IDLE

Effective On the next AV encoder state transition out of IDLE

Description

This parameter sets the vertical decimation ratio for the input stream. If the
decimation ratio is 1, then no scaling is done and the encoded pictures will
have the height of the VIDEO_CAPTURE_RECT. If the ratio is 2, then the
video is vertically downscaled by a factor of 2 and to the nearest multiple
of 16. For example, 480 pixel-high video is downscaled to 240 high, and
576 high video is downscaled to 288 pixels.
The values set by this command are reset by setting the
VENC_OPERATIONAL_MODE configuration parameter.
Confidential Mobilygen Corp. | 147

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
VENC_OPERATIONAL_MODE

AI_CHANNELS

VIDEO_STC_OFFSET

Parameter Q_AVE_CFG_VENC_OPERATIONAL_MODE
ID 10

Value
0 = Q_AVE_CFG_VENC_OPERATIONAL_MODE_LOW_BITRATE
1 = Q_AVE_CFG_VENC_OPERATIONAL_MODE_MED_BITRATE
2 = Q_AVE_CFG_VENC_OPERATIONAL_MODE_HIGH_BITRATE

Valid States IDLE
Effective On the next AV encoder state transition out of IDLE

Description

This parameter sets the general operational mode for the video encoder. It
selects a collection of video encoding tools that are suitable to a particular
bitrate range. The low bitrate toolset should be selected for bitrates
<1.5 Mbps, the medium bitrate is suitable for the range 1.5 to 3.5 Mbps,
and the high bitrate is suitable for rates greater than 3.5 Mbps. The System
Host CPU must still explicitly select the target bitrate and set the rate con-
trol parameters.
Setting this configuration parameter has the effect of resetting many other
parameters. The System Host CPU should, therefore, be careful to set the
operational mode first, and then set the remaining parameters.

Parameter Q_AVE_CFG_AI_CHANNELS
ID 19

Value
1 = Q_AVE_CFP_AI_CHANNELS_STEREO
2 = Q_AVE_CFP_AI_CHANNELS_STEREO_SWAP
3 = Q_AVE_CFP_AI_CHANNELS_STEREO_MONO_LEFT
4 = Q_AVE_CFP_AI_CHANNELS_STEREO_MONO_RIGHT

Valid States IDLE
Effective On the next AV encoder state transition out of IDLE

Description

This parameter is used to direct a particular audio input channel configura-
tion to the audio encoder. Note that this value should be consistent with the
system control configuration parameter, AUDIO_NUM_CHANNELS, such
that if the number of channels is 1, a mono configuration should be chosen.
If the number of channels is 2, then either a mono or a stereo configuration
can be chosen.

Parameter Q_AVE_CFG_VIDEO_STC_OFFSET
ID 39

Value Signed value representing 90 kHz ticks
Valid States IDLE

Effective On the next AV encoder state transition out of IDLE

Description

This parameter allows the System Host CPU to program a fixed offset be-
tween the video and audio streams in order to compensate for variable de-
lays in the input datapath. For example, a system might capture the video
output and scale it creating a one video frame delay relative to the audio.
In this case, a negative offset of one frame (-3003 in NTSC) should be pro-
grammed.
148 | Mobilygen Corp Confidential

Application Programming Interface H.264/AAC Encoder Interface Object
VIDEO_MUTE

AUDIO_MUTE

OUTSAMPLE_ALIGN

Parameter Q_AVE_CFG_VIDEO_MUTE
ID 53

Value 0 is mute off, 1 is mute on
Valid States Idle

Effective Immediate if recording, otherwise on next transition out of IDLE

Description
This parameter is used to "mute" the video input which results in an imme-
diate fade to black, or black to full video. The AV encoder continues to run
with both audio and video encoded, although the encoded video frames
will be black.

Parameter Q_AVE_CFG_AUDIO_MUTE
ID 54

Value 0 is mute off, 1 is mute on
Valid States Idle

Effective Immediate if recording, otherwise on next transition out of IDLE

Description

This parameter is used to "mute" the audio input which is results in an al-
most immediate fade to digital silence (the input signal is attenuated over
3 ms to ensure that there are no audio discontinuities), or from silence to
full audio. The AV encoder continues to run with both audio and video en-
coded, although the encoded audio frames will be silent.

Parameter Q_AVE_CFG_OUTSAMPLE_ALIGN
ID 59

Value 0 for no-padding to 4-byte alignment, 1 to align samples to 4-bytes.
Valid States Idle

Effective On next transition out of IDLE

Description
This parameter is used to force the AAC and AVC encoders to align their
sample data to 4-byte boundaries. This alignment is done using a private
SEI message for the AVC and using padding bits in the AAC.
Confidential Mobilygen Corp. | 149

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
10.7.10 Events

Q_AVE_EV_BITSTREAM_BLOCK_READY

Q_AVE_EV_BITSTREAM_FLUSHED

Q_AVE_EV_VIDEO_FRAME_ENCODED

Q_AVE_EV_AUDIO_FRAME_ENCODED

Event Q_AVE_EV_BITSTREAM_BLOCK_READY
ID 0x30001

Payload

0 = typeAndNumBlocks
1 = address0
2 = size0
3 = address1
4 = size1
5 = address2
6 = size2
7 = address3
8 = size3
9 = address4
10 = size4
11 = address5
12 = size5

Description
This event is generated once for every video and audio frame that is en-
coded. It is up to the System Host CPU to read the data in the block, store
it, and then free it using the BITSTREAM_BLOCK_DONE command. Note
that the first three payload entries are reserved.

Event Q_AVE_EV_BITSTREAM_FLUSHED
ID 0x30003

Payload None

Description
This event is generated once the last bitstream block in the internal mem-
ory buffers has been posted as an event in the event queue. It does not
indicate that the System Host CPU has read the bitstream blocks, merely
that the AV encoder object has transitioned to the IDLE state.

Event Q_AVE_EV_VIDEO_FRAME_ENCODED
ID 0x30005

Payload None
Description This event is generated once for every audio frame that is encoded.

Event Q_AVE_EV_AUDIO_FRAME_ENCODED
ID 0x30004

Payload None
Description This event is generated once for every audio frame that is encoded.
150 | Mobilygen Corp Confidential

Application Programming Interface H.264/AAC Encoder Interface Object
Q_AVE_EV_VIDEO_FRAME_DROP

Q_AVE_EV_VIDEO_FRAME_REPEAT

10.7.11 Status Block

The AV encoder objects maintains a status block that can be polled by the System Host CPU at
any time. The contents of the block are not synchronized with any event, and there is no indi-
cation from the firmware that an update has, or will occur.

typedef struct {
 unsigned int videoFramesEncoded;
 unsigned int videoBufferEmptiness;
 unsigned int videoBufferAccessUnits;
 unsigned int reserved0;
 unsigned int reserved1;
 unsigned int audioFramesEncoded;
 unsigned int audioBufferEmptiness;
 unsigned int audioBufferAccessUnits;
} AVENCODER_STATUS;

The fields in the status block are valid during audio or video encoding, and are set when the AV
encoder exits the IDLE state. Therefore, they remain valid after the FLUSH command has been
issued, and represent the state of the AV encoder just prior to the FLUSH command being pro-
cessed.

videoFramesEncoded

This field stores the number of video frames encoded since the last RECORD command.

videoBufferEmptiness

This field stores the current emptiness of the compressed video buffer.

videoBufferAccessUnits

This field stores the current number of access units in the compressed video buffer. The number
of access units is incremented by one for each video-related BITSTREAM_BLOCK_READY
event, and is decremented by one for every video-related BITSTREAM_BLOCK_DONE com-
mand.

Event Q_AVE_EV_VIDEO_FRAME_DROP
ID 0x30009

Payload None

Description This event is generated once for every video frame that is dropped by the
video input unit due to drift between the audio and video clocks.

Event Q_AVE_EV_VIDEO_FRAME_REPEAT
ID 0x3000A

Payload None

Description This event is generated once for every video frame that is repeated by the
video input unit due to drift between the audio and video clocks.
Confidential Mobilygen Corp. | 151

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
audioFramesEncoded

This field stores the number of audio frames encoded since the last RECORD command.

audioBufferEmptiness

This field stores the current emptiness of the compressed audio buffer.

audioBufferAccessUnits

This field stores the current number of access units in the compressed audio buffer. The number
of access units is incremented by one for each audio-related BITSTREAM_BLOCK_READY
event, and is decremented by one for every audio-related BITSTREAM_BLOCK_DONE com-
mand.
152 | Mobilygen Corp Confidential

Chapter 11. Specif ications
This chapter describes the electrical and mechanical specifications of the MG1264 Codec.
It is divided into these subsections:

• “Electrical Characteristics” on page 154

• “Absolute Maximum Ratings” on page 154

• “Operating Conditions” on page 154

• “DC Characteristics” on page 155

• “Power Supply Pin Voltages” on page 155

• “Power-Up and Power-Down Constraints” on page 155

• “AC Timing” on page 156

• “Video Interface AC Timing” on page 160

• “Audio Interface AC Timing” on page 161

• “MG1264 Codec Host Interface Timing” on page 157

• “SDRAM Interface AC Timing” on page 163

• “Packaging” on page 164

• “Package Dimensions” on page 170

Note: The information contained in this section is based on simulation values
and early characterization of prototype parts. As such, it should be considered
Preliminary data. For the most current values, contact the Mobilygen technical
support department.
Confidential Mobilygen Corp. | 153

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
11.1 Electrical Characteristics
This section specifies the electrical characteristics of the MG1264 Codec.

11.1.1 Absolute Maximum Ratings

Table 11-1 gives the absolute maximum ratings. Exposure to stresses beyond those listed in this
table may result in device unreliability, permanent damage, or both.

11.1.2 Operating Conditions

Table 11-2 specifies the operating conditions for the MG1264 Codec.

Table 11-1 Absolute Maximum Ratings

Parameter Value Units Notes

CVDD 1.6 V —

VDDP 1.6 V —

VDD_IO 4.5 V Applies to both SD and non-SD
VDDO_IO

Maximum Input Voltage IO_VDD + 0.3 V Referenced to associated VDD_IO

Storage Temperature
Range

-40 to 150 °C —

Operating Temperature
Range (case)

0 to 125 °C —

Table 11-2 Operating Conditions

Parameter Minimum Maximum Units

CVDD 1.08 1.32 V

VDDP 1.08 1.32 V

VDD_IO 2.97 3.63 V

VDD_SD_IO 2.25 3.63 V

TAmbient 0 70 °C
154 | Mobilygen Corp Confidential

Specifications Electrical Characteristics
11.1.3 DC Characteristics

Table 11-3 defines the DC characteristics.

11.1.4 Power Supply Pin Voltages

This section provides the recommended voltages for the power supply pins.

11.1.5 Power-Up and Power-Down Constraints

This section provides the recommended power-up and power-down constraints.

Table 11-3 DC Characteristics

Symbol Parameters Test Conditions Min Max Units

VIH Input High Level VDD = Maximum 0.7* VDD_IO — V

VIL Input Low-Level Voltage VDD = Minimum — 03* VDD_IO V

VOH Output High-Level Voltage VDD = Minimum,
IOH = –0.1 mA

0.9* VDD_IO — V

VOL Output Low-Level Voltage VDD = Minimum,
IOL = 0.1 mA

— 0.1* VDD_IO V

IIH Input Leakage VDD = Maximum,
VIN = VDD

–5 5 µA

IIL Input Leakage VDD = Maximum,
VIN = 0V

–5 5 µA

IOZ TriState Leakage VDD = Maximum,
VIN = 0V – VDD_IO

–5 5 µA

IDDCore Core Supply Current VDD = Maximum,
Frequency = 81 MHz

— 175 mA

IDDIO I/O Supply Current VDD = Maximum,
Frequency = 81 MHz

— 5 mA

IDDSD_IO SD I/O Supply Current VDD = Maximum,
Frequency = 81 MHz

— 20 mA

CPIN Capacitancea — — 5 pF

a.Not 100% tested.
Confidential Mobilygen Corp. | 155

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
11.2 AC Timing

This section provides the AC timing for the MG1264 Codec’s various interfaces. This section
is divided into the following subsections:

• “MG1264 Codec Host Interface Timing” on page 157

• “Video Interface AC Timing” on page 160

• “Audio Interface AC Timing” on page 161

• “SDRAM Interface AC Timing” on page 163
156 | Mobilygen Corp Confidential

Specifications AC Timing
11.2.1 MG1264 Codec Host Interface Timing

Figure 11-1 shows the timing diagram for the MG1264 Codec Host Interface, Figure 11-2
shows the DMA Timing, Figure 11-3 shows the Wait timing, and Figure 11-4 shows the Inter-
rupt Request timing. Table 11-4 lists the timing parameters for each of these diagrams.

Figure 11-1 MG1264 Codec Host Interface AC Timing Waveform

Figure 11-2 MG1264 Codec HDMAREQ Timing

TRECTCRE

HCS

HADDR[6:1]

HDATA[15:0]

HWE

HRE

Address Address

Write Data Read Data

TWAS

TWDC

TWAH

TWDH

TRAS TRAH

TRDD

TWECTCWE TREATCWE TWEA

TCSH

TRDV TRDH

CLK

HWR
HRE

HDMAREQ

tCLK

HDMAREQ takes three to four core clock (clk) periods before becoming valid

tRQD
Confidential Mobilygen Corp. | 157

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Figure 11-3 HWAIT Timing

Figure 11-4 HIRQ Timing

CLK

HWR
HRE

HWAIT

HWR
HRE

HWAIT

The MG1264 Codec Host Interface
needs three to four core clock (clk)
cycles at the end of a host access
before HWAIT is valid.

tWD

tCLK

tWV

Short Time Between Accesses <2 Core Clock Periods

tWD

tWV

Long Time Between Accesses >2 Core Clock Periods

The MG1264 Codec Host Interface
generates HWAIT from the core clock
so the leading edge of HRE or HWR,
HWAIT may not be valid for one core
clock (clk) cycle, plus some
combinatorial delay.

CLK

HIRQ

tCLK

tID
158 | Mobilygen Corp Confidential

Specifications AC Timing
Table 11-4 Host Interface Timing

Signal Parameter Description Min Max Units

HADDR[6:1] tWAS HADDR setup to trailing edge HWEn for
write cycles

37 — ns

tWAH HADDR hold from trailing edge HWEn for
write cycles

3 — ns

tRAS HADDR setup to leading edge HREn for
read cycles

0 — ns

tRAH HADDR hold from trailing edge HREn for
read cycles

0 — ns

HDATA[15:0] tWDC HDATA setup to trailing edge HWEn for
write cycles

37 — ns

tWDH HDATA hold from trailing edge HWEn for
write cycles

3 — ns

tRDD HDATA driven from leading edge HREn for
read cycles

0 — ns

tRDV HDATA valid from leading edge HREn for
read cycles

— 15 ns

tRDH HDATA hold from trailing edge HREn for
read cycles

2 15 ns

HWEn tCWE HCSn Active to HWEn Active 0 — ns

tWEC HWEn Inactive to HCSn Inactive 3 — ns

tWEA HWEn active time 37 — ns

HREn tCRE HCSn Active to HREn Active 0 — ns

tREC HREn Inactive to HCSn Inactive 0 — ns

tREA HREn active time 3*tCLK + 8 — ns

HCSn tCSH HCSn inactive time between accesses 2*tCLK — ns

HDMARQn tRQD HDMARQn valid from internal clock — 8 ns

HIRQn TID HIRQn valid from internal clock — 8 ns

HWAITn tWD HWAITn valid from internal clock — 8 ns

HWAITn tWV HWAITn valid from HREn/ HWEn — 12 ns
Confidential Mobilygen Corp. | 159

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
11.2.2 Video Interface AC Timing

Figure 11-5 and Table 11-5 show the AC timing parameters for the video interface.

Figure 11-5 Video Interface Timing Diagram

VID_CLK

VID_DATA

VIDOUT_DATA

TVF

TVIS TVIH

TVC

TVOS TVOH

TVL TVH TVR

Table 11-5 Video Interface AC Timing Values

Signal Parameter Description

Timing Value (ns.)

Min Typ Max

VID_CLK

TVC VID_CLK Cycle Time (27 MHz) — 37

TVH VID_CLK High Time .4*TVC TVC/2 .6*TVC

TVL VID_CLK Low Time TVC - TVH

TVR VID_CLK Slew (Rise Time) Not Applicable

TVF VID_CLK Slew (Fall Time) Not Applicable

VID_DATA
TVIS VID_DATA Set-up Time to VID_CLK 5.5 — —

TVIH VID_DATA Hold Time from VID_CLK 0 — —

VIDOUT_DATA
TVOS VIDOUT_DATA Set-up Time to VID_CLK 16 — —

TVOH VIDOUT_DATA Hold Time from VID_CLK 6 — —
160 | Mobilygen Corp Confidential

Specifications AC Timing
11.2.3 Audio Interface AC Timing
This section gives the AC timing parameters for the MG1264 Codec’s audio interface.
Figure 11-6 shows the relationships between the three audio clocks. Figure 11-7 shows the tim-
ing waveforms. Table 11-6 lists the AC timing for Audio Operations.

Figure 11-6 Audio Timing Diagram

Figure 11-7 Audio Interface Timing Diagram

AUD_CLK

AUD_LRCK

AUD_BCK

AUD_IDAT

AUD_ODAT

256 AMCKs

64/32 ABCKs

AUD_BCK

AUD_LRCK
AUD_IDAT

AUD_ODAT

TBF

TABS TABH

TBC TBL TBH TBR
Confidential Mobilygen Corp. | 161

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Table 11-6 Audio Interface AC Timing Values

Signal Parameter Description

Timing Value (ns.)

Min Typ Max

AUD_BCK

TBC AUD_BCK Cycle Time (48 kHz) — 20833 —

TBC AUD_BCK Cycle Time (32 kHz) — 31250 —

TBH AUD_BCK High Time .4*TBC TBC/2 .6*TBC

TBL AUD_BCK Low Time TBC - TBH

TBR AUD_BCK Slew (Rise Time) — — 1.5

TBF AUD_BCK Slew (Fall Time) — — 1.6

AUD_LRCK
AIODATA
AODAIA

TABS Set-up Time to AUD_BCK 8 — —

TABH Hold Time from AUD_BCK 3 — —
162 | Mobilygen Corp Confidential

Specifications AC Timing
11.2.4 SDRAM Interface AC Timing

The MG1264 Codec adheres to the JEDEC definition of timing for SDRAMs. Refer to the ap-
propriate specifications when designing the SDRAM Interface.
Confidential Mobilygen Corp. | 163

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
11.3 Packaging
Figure 11-8 shows the pinout for the MG1264 Codec. This figure is continued on the next page.
Table 11-7 shows the pin list sorted alphabetically.

Figure 11-8 MG1264 Codec Pinout Diagram

1 2 3 4 5 6 7 8

A HADDR1 VIDOUT_
DATA0

VIDOUT_
DATA2

VIDOUT_
DATA4

VIDOUT_
DATA6

VOFIELD VOHSYNC VID_DATA7

B HADDR2 HCS VIDOUT_
DATA1

VIDOUT_
DATA3

VIDOUT_
DATA5

VIDOUT_
DATA7

VOVSYNC VID_CLK

C HADDR4 HADDR3 — — — — — —

D HADDR6 HADDR5 — — CVDD — — —

E IVDDW33 HWE — CVDD — — — —

F HINT HRE — — — — OVDDW33 OVDDW33

G HDMARQ HWAIT — — — OVDDW33 GND GND

H HDATA1 HDATA0 — — — OVDDW33 GND GND

J HDATA2 HDATA3 — — — GND GND GND

K HDATA4 HDATA5 — — — GND GND GND

L HDATA6 HDATA7 — — — GND OVDDW25 OVDDW25

M HDATA8 HDATA9 — CVDD — — — —

N HDATA10 HDATA11 — — CVDD CVDD — —

P HDATA12 HDATA13 — — — — — —

R HDATA14 RESET TMS TDI TDO TMODE AUD_CLK AUD_LRCK

T HDATA15 SIN SOUT TCK TRST AUD_IDAT AUD_ODAT AUD_BCK
164 | Mobilygen Corp Confidential

Specifications Packaging

Figure 11-8 MG1264 Codec Pinout Diagram (Continued)

9 10 11 12 13 14 15 16

VID_DATA6 VID_DATA4 VID_DATA2 VID_DATA0 VID_VSYNC XIN PLL_AVDD PLL_AVSS A

VID_DATA5 VID_DATA3 VID_DATA1 VID_FIELD VID_HSYNC IVDDW33 SD_CLK SD_DQ0 B

— — — — — — SD_DQ1 SD_DQ15 C

— — — CVDD — — IVDDW25 SD_DQ13 D

— — — — CVDD — SD_DQ2 SD_DQ14 E

GND GND GND — — — SD_DQ4 SD_DQ3 F

GND GND OVDDW25 — — — SD_DQ12 SD_DQ11 G

GND GND OVDDW25 — — — SD_DQ6 SD_DQ10 H

GND GND OVDDW25 — — — SD_DQ9 SD_DQ5 J

GND GND OVDDW25 — — — SD_DQ8 SD_CKE K

OVDDW25 OVDDW25 OVDDW25 — — — SD_DQM1 SD_DQM0 L

— — — — CVDD — SD_ADDR11 SD_ADDR12 M

— — — CVDD — — IVDDW25 SD_ADDR9 N

— — — — — — SD_ADDR8 SD_ADDR7 P

SD_ADDR2 SD_ADDR1 SD_CS SD_BA0 IVDDW25 SD_CAS SD_ADDR6 SD_ADDR5 R

SD_ADDR10 SD_ADDR3 SD_ADDR0 SD_BA1 SD_WE SD_RAS SD_ADDR4 SD_DQ7 T
Confidential Mobilygen Corp. | 165

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Table 11-7 MG1264 Codec Pin List Sorted Alphabetically

Pin Signal Pin Signal Pin Signal Pin Signal

T8 AUD_BCK E2 HWE GND OVSS NC SD_DQ30

R7 AUD_CLK G2 HWAIT GND OVSS NC SD_DQ31

T6 AUD_IDAT D15 IVDDW25 GND OVSS F15 SD_DQ4

R8 AUD_LRCK N15 IVDDW25 GND OVSS J16 SD_DQ5

T7 AUD_ODAT R13 IVDDW25 GND OVSS H15 SD_DQ6

D12 CVDD B14 IVDDW33 GND OVSS T16 SD_DQ7

D5 CVDD E1 IVDDW33 R2 RESET K15 SD_DQ8

E13 CVDD GND IVSS T11 SD_ADDR0 J15 SD_DQ9

E4 CVDD GND IVSS R10 SD_ADDR1 L16 SD_DQM0

M13 CVDD GND IVSS T9 SD_ADDR10 L15 SD_DQM1

M4 CVDD GND IVSS M15 SD_ADDR11 NC SD_DQM2

N12 CVDD VDD2 OVDDW25 M16 SD_ADDR12 NC SD_DQM3

N5 CVDD VDD2 OVDDW25 R9 SD_ADDR2 T14 SD_RAS

N6 CVDD VDD2 OVDDW25 T10 SD_ADDR3 T13 SD_WE

GND CVSS VDD2 OVDDW25 T15 SD_ADDR4 T2 SIN

GND CVSS VDD2 OVDDW25 R16 SD_ADDR5 T3 SOUT

GND CVSS VDD2 OVDDW25 R15 SD_ADDR6 T4 TCK

GND CVSS VDD2 OVDDW25 P16 SD_ADDR7 R4 TDI

GND CVSS VDD2 OVDDW25 P15 SD_ADDR8 R5 TDO

GND CVSS VDD2 OVDDW25 N16 SD_ADDR9 R6 TMODE

GND CVSS VDD2 OVDDW25 R12 SD_BA0 R3 TMS

GND CVSS VDD2 OVDDW25 T12 SD_BA1 T5 TRST

GND CVSS VDD2 OVDDW25 R14 SD_CAS A15 PLL_AVDD

A16 PLL_AVSS VDD2 OVDDW25 K16 SD_CKE B8 VID_CLK

A1 HADDR1 VDD2 OVDDW25 B15 SD_CLK A12 VID_DATA_0

B1 HADDR2 VDD1 OVDDW33 R11 SD_CS B11 VID_DATA_1

C2 HADDR3 VDD1 OVDDW33 B16 SD_DQ0 A11 VID_DATA_2

C1 HADDR4 VDD1 OVDDW33 C15 SD_DQ1 B10 VID_DATA_3

D2 HADDR5 VDD1 OVDDW33 H16 SD_DQ10 A10 VID_DATA_4

D1 HADDR6 VDD1 OVDDW33 G16 SD_DQ11 B9 VID_DATA_5

B2 HCS VDD1 OVDDW33 G15 SD_DQ12 A9 VID_DATA_6

H2 HDATA0 VDD1 OVDDW33 D16 SD_DQ13 A8 VID_DATA_7

H1 HDATA1 VDD1 OVDDW33 E16 SD_DQ14 B12 VID_FIELD

N1 HDATA10 GND OVSS C16 SD_DQ15 B13 VID_HSYNC

N2 HDATA11 GND OVSS NC SD_DQ16 A13 VID_VSYNC
166 | Mobilygen Corp Confidential

Specifications Packaging
P1 HDATA12 GND OVSS NC SD_DQ17 A2 VIDOUT_DATA_0

P2 HDATA13 GND OVSS NC SD_DQ18 B3 VIDOUT_DATA_1

R1 HDATA14 GND OVSS NC SD_DQ19 A3 VIDOUT_DATA_2

T1 HDATA15 GND OVSS E15 SD_DQ2 B4 VIDOUT_DATA_3

J1 HDATA2 GND OVSS NC SD_DQ20 A4 VIDOUT_DATA_4

J2 HDATA3 GND OVSS NC SD_DQ21 B5 VIDOUT_DATA_5

K1 HDATA4 GND OVSS NC SD_DQ22 A5 VIDOUT_DATA_6

K2 HDATA5 GND OVSS NC SD_DQ23 B6 VIDOUT_DATA_7

L1 HDATA6 GND OVSS NC SD_DQ24 A6 VIDOUT_FIELD

L2 HDATA7 GND OVSS NC SD_DQ25 A7 VIDOUT_HSYNC

M1 HDATA8 GND OVSS NC SD_DQ26 B7 VIDOUT_VSYNC

M2 HDATA9 GND OVSS NC SD_DQ27 A14 XIN

G1 HDMARQ GND OVSS NC SD_DQ28 — —

F1 HIRQ GND OVSS NC SD_DQ29 — —

F2 HRE GND OVSS F16 SD_DQ3 — —

Table 11-7 MG1264 Codec Pin List Sorted Alphabetically

Pin Signal Pin Signal Pin Signal Pin Signal
Confidential Mobilygen Corp. | 167

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
Table 11-8 MG1264 Codec Pin List by Side

Left side Bottom side Right side Top side
Pin Signal Pin Signal Pin Signal Pin Signal

GND OVSS R4 TDI GND IVSS NC
B2 HCS R5 TDO N15 IVDDW25 NC
A1 HADDR1 T5 TRST N16 SD_ADDR9 NC
GND CVSS GND CVSS M15 SD_ADDR11 VDD2 OVDDW25
NC N5 CVDD NC SD_DQM3 NC
NC NC NC SD_DQM2 NC
NC NC NC SD_DQ31 GND OVSS
E4 CVDD NC GND OVSS NC
B1 HADDR2 R6 TMODE VDD2 OVDDW25 NC
C2 HADDR3 T6 AUD_IDAT M16 SD_ADDR12 NC
C1 HADDR4 R7 AUD_CLK M13 CVDD VDD1 OVDDW33
D2 HADDR5 N6 CVDD NC SD_DQ30 D12 CVDD
NC T7 AUD_ODAT L15 SD_DQM1 NC
NC R8 AUD_LRCK NC SD_DQ29 A16 PLL_AVSS
NC NC GND CVSS NC
D1 HADDR6 NC NC SD_DQ28 A15 PLL_AVDD
E2 HWE T8 AUD_BCK GND OVSS GND CVSS
GND IVSS NC VDD2 OVDDW25 GND IVSS
E1 IVDDW33 T9 SD_ADDR10 L16 SD_DQM0 B14 IVDDW33
F2 HRE R9 SD_ADDR2 NC SD_DQ27 A14 XIN
NC T10 SD_ADDR3 K15 SD_DQ8 B13 VID_HSYNC
NC NC GND OVSS NC
NC NC VDD2 OVDDW25 NC
F1 HIRQ NC GND OVSS NC
G2 HWAIT VDD2 OVDDW25 GND OVSS A13 VID_VSYNC
G1 HDMARQ R10 SD_ADDR1 K16 SD_CKE B12 VID_FIELD
NC T11 SD_ADDR0 NC SD_DQ26 A12 VID_DATA_0
NC GND OVSS J15 SD_DQ9 B11 VID_DATA_1
NC NC VDD2 OVDDW25 A11 VID_DATA_2
VDD1 OVDDW33 NC GND CVSS NC
H2 HDATA0 NC J16 SD_DQ5 NC
H1 HDATA1 R11 SD_CS NC SD_DQ25 NC
GND OVSS T12 SD_BA1 NC SD_DQ24 VDD1 OVDDW33
J1 HDATA2 VDD2 OVDDW25 H16 SD_DQ10 B10 VID_DATA_3
NC GND OVSS VDD2 OVDDW25 A10 VID_DATA_4
J2 HDATA3 NC H15 SD_DQ6 NC
168 | Mobilygen Corp Confidential

Specifications Packaging
VDD1 OVDDW33 R12 SD_BA0 G16 SD_DQ11 GND OVSS
GND OVSS T13 SD_WE NC SD_DQ23 B9 VID_DATA_5
K1 HDATA4 GND IVSS NC SD_DQ22 NC
K2 HDATA5 R13 IVDDW25 G15 SD_DQ12 A9 VID_DATA_6
NC NC GND OVSS VDD1 OVDDW33
NC NC F16 SD_DQ3 GND OVSS
NC NC NC SD_DQ21 A8 VID_DATA_7
L1 HDATA6 T14 SD_RAS VDD2 OVDDW25 NC
L2 HDATA7 R14 SD_CAS F15 SD_DQ4 NC
GND OVSS GND OVSS NC SD_DQ20 NC
VDD1 OVDDW33 VDD2 OVDDW25 NC SD_DQ19 B8 VID_CLK
M1 HDATA8 NC GND OVSS A7 VIDOUT_HSYNC
NC NC E13 CVDD B7 VIDOUT_VSYNC
NC NC NC SD_DQ18 A6 VIDOUT_FIELD
NC GND CVSS NC SD_DQ17 NC
M2 HDATA9 N12 CVDD E16 SD_DQ14 NC
N1 HDATA10 T15 SD_ADDR4 E15 SD_DQ2 NC
N2 HDATA11 T16 SD_DQ7 VDD2 OVDDW25 B6 VIDOUT_DATA_7
VDD1 OVDDW33 NC D16 SD_DQ13 GND OVSS
GND OVSS NC GND OVSS A5 VIDOUT_DATA_6
NC NC GND CVSS B5 VIDOUT_DATA_5
NC VDD2 OVDDW25 D15 IVDDW25 NC
NC GND OVSS NC SD_DQ16 NC
P1 HDATA12 R15 SD_ADDR6 NC NC
P2 HDATA13 R16 SD_ADDR5 NC GND CVSS
R1 HDATA14 NC C15 SD_DQ1 D5 CVDD
T1 HDATA15 NC VDD2 OVDDW25 VDD1 OVDDW33
R2 RESET NC C16 SD_DQ15 A4 VIDOUT_DATA_4
M4 CVDD GND OVSS NC NC
NC P16 SD_ADDR7 GND OVSS NC
NC P15 SD_ADDR8 B16 SD_DQ0 B4 VIDOUT_DATA_3
T2 SIN GND CVSS NC A3 VIDOUT_DATA_2
T3 SOUT NC NC B3 VIDOUT_DATA_1
R3 TMS NC NC A2 VIDOUT_DATA_0
T4 TCK VDD2 OVDDW25 B15 SD_CLK NC

Table 11-8 MG1264 Codec Pin List by Side

Left side Bottom side Right side Top side
Pin Signal Pin Signal Pin Signal Pin Signal
Confidential Mobilygen Corp. | 169

MG1264 Low Power H.264 and AAC Codec for Mobile Devices User Manual
11.4 Package Dimensions
Figure 11-9 shows the 156-pin BGA package dimensions.

Note: These dimensions are preliminary and subject to change. Contact Mobilygen Tech-
nical Marketing for up-to-date information.

Figure 11-9 156-pin BGA Package Mechanical Dimensions
170 | Mobilygen Corp Confidential

	About This Document
	Audience
	Conventions
	Terms
	Chapter 1. Overview 13
	Chapter 2. MG1264 Codec Host Interface 21
	Chapter 3. Video Interface 49
	Chapter 4. SDRAM Interface 57
	Chapter 5. Audio Interface 61
	Chapter 6. Miscellaneous Signals 65
	Chapter 7. Programming 67
	Chapter 8. Bringing up the MG1264 Codec 69
	Chapter 9. Firmware Loader 85
	Chapter 10. Application Programming Interface 91
	Chapter 11. Specifications 153

	Chapter 1. Overview
	1.1 Architecture
	1.2 MG1264 Codec Applications
	1.3 Features
	1.3.1 MG1264 Codec Specifications
	1.3.2 H.264 Encoder Target Performance
	1.3.3 PAL Resolution H.264
	1.3.4 SVGA 800x600 Video Resolution
	1.3.5 Video Input and Output Scaling
	1.3.6 User Control of H.264 Encoder Features (Tools)
	1.3.7 The AAC Audio CODEC
	1.3.8 I/O Control

	Chapter 2. MG1264 Codec Host Interface
	2.1 MG1264 Codec Host Interface Physical Description
	2.1.1 Connection Diagram
	2.1.2 MG1264 Codec Host Interface Signals

	2.2 MG1264 Codec Host Interface Logical Description
	2.2.1 System Control
	2.2.2 Compressed Data I/O Through the MG1264 Codec Host Interface
	2.2.3 Interrupts
	2.2.4 DMA Channels
	2.2.5 Latency Considerations

	2.3 Read/Write Timing
	2.3.1 Read Timing Sequence in Read Enable Mode
	2.3.2 Write Data Timing in Write Enable Mode
	2.3.3 Read Timing Sequence in Read/Write and Enable Mode
	2.3.4 Write Data Timing in Read/Write and Enable Mode

	2.4 DMA Transfers
	2.4.1 Pacing using the HDMAREQ Pin
	2.4.2 Pacing using the EMFifoRdReq/EMFifoWrReq Bits
	2.4.3 Pacing using the HWAIT Pin

	2.5 MG1264 Codec Register Indirect Access
	2.5.1 Reading a Register
	2.5.2 Writing a Register

	2.6 Programming the MG1264 Codec Host Interface
	2.6.1 Register Maps

	2.7 Register Definitions
	2.7.1 Configuration, Data, and Status Registers
	2.7.2 Peripheral Interrupt Registers
	2.7.3 Clock and Configuration Registers
	2.7.4 Accessing External Memory Port 1 and Port 2
	2.7.5 Reading the MG1264 Codec’s External Memory
	2.7.6 Checking the FIFO Status
	2.7.7 External Memory Access Registers
	2.7.8 Bitstream Write FIFO Access Registers

	Chapter 3. Video Interface
	3.1 Video Interface Usage
	3.1.1 Interlaced ITU-RBT.656 Video Interfaces
	3.1.2 Progressive Video Interfaces for D1 Resolution and Below
	3.1.3 Progressive Video Interface for 800x600 (SVGA) and 768x576.

	3.2 Video Interface Signals
	3.3 Video Interface Timing

	Chapter 4. SDRAM Interface
	4.1 The SDRAM Interface
	4.2 Mobile SDRAM Features
	4.2.1 Voltage Operation (3.3V, 2.5V, 1.8V)
	4.2.2 Temperature Compensated Self-Refresh
	4.2.3 Deep Power Down
	4.2.4 Drive Strength Control

	Chapter 5. Audio Interface
	5.1 Audio Interface Overview
	5.2 Audio Interface Signals
	5.3 I2S Audio Waveforms
	5.4 Left Justified Audio Waveform
	5.5 16, 20, 24, 32-Bit Left Justified Audio Waveform

	Chapter 6. Miscellaneous Signals
	Chapter 7. Programming
	7.1 Modes Of Operation
	7.2 Power-Up and Initialization
	7.3 Encode and Decode Mode

	Chapter 8. Bringing up the MG1264 Codec
	8.1 Decoder Bringup
	8.1.1 Phase 1: Decoding a Small Elementary NAL Video Stream
	8.1.2 Phase 2: Decoding a Large Elementary NAL Video Stream with Software Flow Control
	8.1.3 Phase 3: Decoding A QBOX Stream

	8.2 Encoder Bringup
	8.2.1 Phase 1: Recording a Small Elementary NAL Video Stream
	8.2.2 Phase 2: Recording a Large Elementary NAL Video Stream with Software Flow Control
	8.2.3 Phase 3: Recording a QBOX Stream

	Chapter 9. Firmware Loader
	9.1 Firmware Image Format
	9.1.1 Header
	9.1.2 Global Pointer Block
	9.1.3 Pre-download CSR
	9.1.4 Firmware
	9.1.5 Uninitialized Data
	9.1.6 End

	9.2 Sample Code

	Chapter 10. Application Programming Interface
	10.1 Host Interface and the Hardware Abstraction Layer
	10.1.1 QHAL_EM
	10.1.2 QHAL_MBOX
	10.1.3 QHAL_BS

	10.2 Media Processor Firmware Programming Model
	10.2.1 Control Objects
	10.2.2 Commands, Events, and Inter-Processor Communications
	10.2.3 Global Pointer Block
	10.2.4 Sending a Command to the Firmware
	10.2.5 Reading Events from the Media Processor Firmware
	10.2.6 Subscribing and Unsubscribing to Events
	10.2.7 Configuration Parameters
	10.2.8 Status Block

	10.3 Bitstream Formats
	10.3.1 QBox Bitstream Format
	10.3.2 Elementary Video

	10.4 System Control Interface Object
	10.4.1 Overview
	10.4.2 Object ID
	10.4.3 State Machine
	10.4.4 Commands
	10.4.5 Configuration Parameters
	10.4.6 Events

	10.5 Status Block
	10.5.1 heartbeat
	10.5.2 droppedEvents
	10.5.3 evReadWritePointers
	10.5.4 pendingEvent

	10.6 H.264/ACC Decoder Interface Object
	10.6.1 Overview
	10.6.2 Logical View of the AV Decoder
	10.6.3 AV Decoder Features
	10.6.4 Sending Encoded Bitstreams to the Decoder
	10.6.5 Object ID
	10.6.6 State Machine
	10.6.7 Commands
	10.6.8 Configuration Parameters
	10.6.9 Events
	10.6.10 Status Block
	10.6.11 Trick Play Techniques

	10.7 H.264/AAC Encoder Interface Object
	10.7.1 Overview
	10.7.2 Logical View of the AV Encoder
	10.7.3 AV Encoder Features
	10.7.4 Receiving Encoded Bitstreams from the Encoder
	10.7.5 Controlling the Video Bitrate
	10.7.6 Object ID
	10.7.7 State Machine
	10.7.8 Commands
	10.7.9 Configuration Parameters
	10.7.10 Events
	10.7.11 Status Block

	Chapter 11. Specifications
	11.1 Electrical Characteristics
	11.1.1 Absolute Maximum Ratings
	11.1.2 Operating Conditions
	11.1.3 DC Characteristics
	11.1.4 Power Supply Pin Voltages
	11.1.5 Power-Up and Power-Down Constraints

	11.2 AC Timing
	11.2.1 MG1264 Codec Host Interface Timing
	11.2.2 Video Interface AC Timing
	11.2.3 Audio Interface AC Timing
	11.2.4 SDRAM Interface AC Timing

	11.3 Packaging
	11.4 Package Dimensions

