システムリセット(ウォッチドグタイマ内蔵)用IC

Monolithic IC MM1075

概要

本ICは、さまざまなCPUシステムやその他のロジックシステムにおける電源電圧の瞬断・瞬低時にリセット信号を発生し、確実にリセットをかけるICです。

さらに、システムの動作診断ができるウォッチドグタイマが内蔵されており、システムが誤動作した時にリセットパルスを間欠的に発生し、システムの暴走を防止します。

特長

- (1) ウォッチドグタイマ内蔵
- (2) 最小動作電圧が低い

 $V_{CC} = 0.8V$ typ.

- (3) 正負両論理のリセット出力が取り出し可能
- (4) 電源電圧低下の検出が正確
- (5) 検出電圧はヒステリシス付き
- (6) 外付け部品が少ない(コンデンサ1個)
- (7) Rを外付けすることによってタイマ監視時間の可変ができる

パッケージ

DIP-8A (MM1075XD) SOP-8A (MM1075XF)

用途

マイコンのシステム監視等

最大定格

(Ta=25℃)

項目	記 号	定格	単 位
保 存 温 度	Tstg	-40∼+125	${\mathbb C}$
動 作 温 度	Topr	-20∼+70	${\mathcal C}$
電源電圧	Vcc max.	-0.3∼+10	V
VS&CK端子印加電圧	Vvs &Vck	-0.3∼+10	V
RESET、RESET端子印加電圧	Vон	-0.3∼+10	V
許容損失	Pd	400	mW

電気的特性(DC) (特記なき場合Ta=25℃、Vcc=5V)

項目	記号	測定回路	測定条件	最小	標準	最大	単位											
消費電流	Icc	1	ウォッチドグタイマ動作中		0.7	1.0	mA											
 検出電圧	Vsl	1	Vs = OPEN, Vcc	4.05	4.20	4.35	V											
快山电压	Vsh	VsH 1 Vs = OPEN, Vcc		4.15	4.30	4.45	v											
検出電圧温度係数	Vs/⊿T	1			± 0.01		%/°C											
ヒステリシス電圧	VHYS	1	V _{SH} – V _{SL} , V _{CC}	50	100	150	mV											
CK入力しきい値	VTH	1		0.8	1.2	2	V											
CK入力電流	I _{IH}	1	$V_{CK} = 5V$		0	1	μA											
UK八刀电机	Iπ	1	$V_{CK} = 0V$	-20	-10	-3	μ A											
出力電圧(Hi時)	Von1	1	$I_{\overline{RESET}} = -5\mu A$, $V_S = OPEN$	4.5	4.8		V											
山刀电圧(川村)	Vон2	1	$I_{RESET} = -5\mu A, V_S = 0V$	4.5	4.8		V											
	Vol1	1	$I_{\text{RESET}} = 3\text{mA}, V_{\text{S}} = 0V$		0.2	0.2 0.4												
出力電圧(Lo時)	Vol2	1	$I \overline{\text{RESET}} = 10 \text{mA}, V_S = 0 \text{V}$		0.3	0.5	V											
四刀电圧(LO時)	Vol3	1	$I_{RESET} = 0.5 \text{mA}, V_{S} = OPEN$		0.2	0.4	v											
	Vol4	1	$I_{RESET} = 1 \text{mA}, V_{S} = OPEN$		0.3	0.5												
出力シンク電流	Iol1	1	$V \overline{RESET} = 1.0 V, V_S = 0 V$	10	16		mA											
山刀ノノノ电川	Iol2	1	$V_{RESET} = 1.0V$, $V_{S} = OPEN$	1	2		ША											
	Іст1	Іст1	Log 1	I _{om} 1	Iom1	Low1	Tor 1	Log 1	Tom1	Tom1	Iom1	I _{CD} 1	1	ウォッチドグタイマ動作時	-0.8	-1.2	_ 9.4	A
C⊤充電電流 ※1			1	$V_{TC} = 1.0V$, $R_{CT} = OPEN$	-0.8	1.2	-2.4	μ A										
OI儿电电加 ※I	Іст2	1	パワーONリセット動作時	-0.8	-1.2	-2.4	μΑ											
	ICTZ	1	$V_{CT} = 1.0V$	0.8	1.2	2.4	$\mu\Lambda$											
RESET保証	Vccl1	1	$V \overline{RESET} = 0.4V$		0.8	1.0	V											
最小動作電源電圧	VCCLI	1	$I_{RESET} = 0.2 \text{mA}$		0.0	1.0	v											
RESET保証	Vccl2	1	$V_{RESET} = V_{CC} - 0.1V$		0.8	1.0	V											
最小動作電源電圧	V CCLZ	v CCLZ	1	R_{L2} (2PIN – GND間) = 1M Ω		0.8	1.0	V										

電気的特性(AC) (特記なき場合Ta=25℃、Vcc=5V)(指定なき抵抗の単位はΩ)

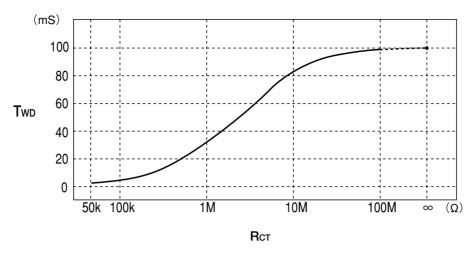
項目	記号	測定回路	測定条件	最小	標準	最大	単位
Vcc入力パルス幅	T _P 1	2	Vcc 5V 4V	8			μs
CK入力パルス幅	Тскw	2	CK or	3			μs
CK入力周期	Тск	2		20			μs
ウォッチドグタイマ 監視時間 ※2	Twd	2	$C_T = 0.1 \mu F$ $R_{CT} = OPEN$	50	100	150	ms
ウォッチドグタイマ時 リセット時間 ※3	Twr	2	$C_{\mathrm{T}} = 0.1 \mu\mathrm{F}$	1	2	3	ms
電源立ち上がり時 リセットホールド時間 ※4	TPR	2	$C_T = 0.1 \mu\text{F, Vcc}$	50	100	150	ms
Vccからの 出力遅延時間	TPD1	2	$RESET$ 端子 $R_L1 = 2.2k, C_L1 = 100pF$		2	10	
※5	TPD2	2	RESET端子 R1, 2=10k, Ct2=20pF		3	10	μs
出力立ち上がり時間	tr1	2	RESET端子 R _L 1 = 2.2k, C _L 1 = 100pF		1.0	1.5	μs
※6	tr2	2	RESET端子 RL2=10k, CL2=20pF		1.0	1.5	μs
出力立ち下がり時間 ※6	tr1	2	RESET端子 RL1=2.2k, CL1=100pF		0.1	0.5	μs
	t _F 2	2	RESET端子 RL2=10k, CL2=20pF		0.5	1.0	μs

注:

- ※1 Ict1は、Rct端子(6PIN)のPULL UP抵抗により変化します。
- ※2 監視時間とは、タイマクリア用のクロックパルスの最後のパルス(負のエッジ)からリセットパルスを出力するまでの時間をいいます。つまり、この間クロックパルスが入力されなければリセット出力を出します。また、RcT端子を抵抗(RcT)でVccにPULL UPすることにより監視時間を可変することができます。可変時間は、グラフ1のようになります。
- ※3 リセット時間とは、リセットパルス幅をいいます。ただし、パワーONリセット時は適用外です。
- ※4 リセットホールド時間とは、パワーONリセット(電源変動リセット)時にVccが検出電圧(VsH)を越えた時から、 リセット解除(RESET出力が"High"、RESET出力が"Low")になるまでの時間をいいます。
- ※5 出力遅延時間とは、電源電圧が検出電圧(VsI)より下回った時から、リセット状態(RESET出力が"Low"、RESET 出力が"High")になるまでの時間をいいます。
- ※6 出力立ち上がり・立ち下がり測定時の電圧範囲は、10~90%です。
- %7 C_T の容量を可変することにより、ウォッチドグタイマ監視時間 (T_{WD}) 、ウォッチドグタイマ時のリセット時間 (T_{WR}) 、電源立ち上がり時リセットホールド時間 (T_{PR}) を変えることができます。可変時間は、下式で表されます。 C_T は $0.001 \sim 10 \mu$ Fが推奨範囲です。

 T_{PR} (ms) $\simeq 1000 \times C_T (\mu F)$

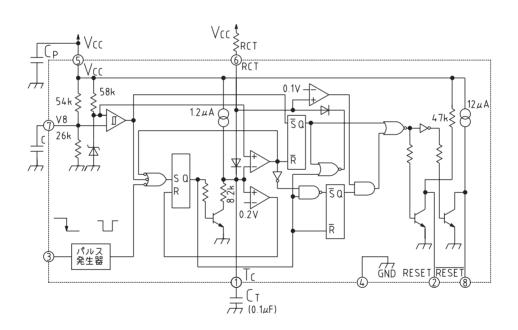
 T_{WD} (ms) $\simeq 1000 \times C_T (\mu F)$


 T_{WR} (ms) $\simeq 20 \times C_T (\mu F)$

(例) $C_T = 0.1 \mu F(R_{CT} 端子はOPEN)$ の時

 $T_{PR} \simeq 100 ms$

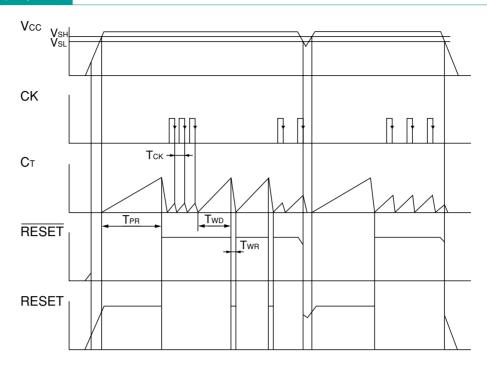
TwD ≃100ms


 $T_{WR} \simeq 2ms$

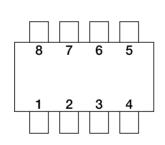
グラフ1 Вст一監視時間

注:上記グラフは、 $C_T = 0.1 \mu$ Fの時のデータです。 T_{WD} は C_T に比例します。上記 T_{WD} の計算式を参照して下さい。

ブロック図


注1:C_P=0.1μF程度

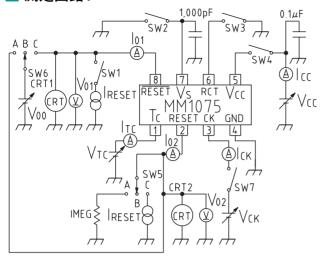
注2:C≃1000pF


注3:RCT端子をGNDに接続することによりウォッチドグタイマを停止することができます。(電圧検出回路として機能する)

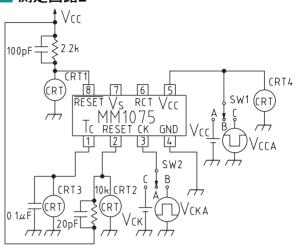
注4:RCT端子をVccに抵抗でPULL UPすることにより、Tpr、Twdを可変することができます。Rctの推奨範囲は、100kΩ~RCT端子OPENです。

タイミングチャート

端子接続図


1	TC
2	RESET
3	СК
4	GND
5	Vcc
6	RCT
7	Vs
8	RESET

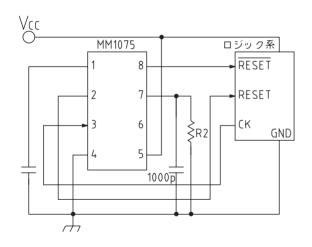
端子説明


ピンNo.	端子名	機能
1	TC	Twp、Twr、Tpr可変端子(外付けコンデンサによりTwp、Twr、Tprの時間を決める)
2	RESET	リセット出力端子 (High出力)
3	CK	クロック入力端子(ロジック系からのクロックを入力します)
4	GND	GND端子
5	Vcc	4.2V検出電圧
6	RCT	ウォッチドグタイマ停止端子 動作モード 動作→OPEN 停止→GNDに接続
7	Vs	検出電圧可変端子 可変モード 下げる→抵抗をPULL UP 上げる→PULL DOWN
8	RESET	リセット出力端子(Low出力)

測定回路図

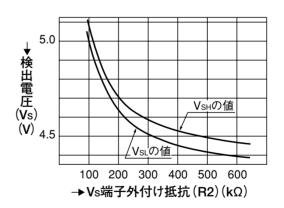
■ 測定回路1

■ 測定回路2

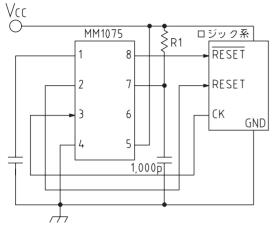

測定回路2一1 SW&電源表

項目	記号	SW1	SW2	SW3	SW4	SW5	SW6	SW7	Vcc	Vск	V ст	RESET	IRESET	VM.IM	備考
電源電流	Icc	OFF	OFF	OFF	ON	В	В	ON	5V	5V	0V	_	_	Icc	
₩₩₩	Vsl	OFF	OFF	ON	ON	В	В	ON	5V→4V	3V	3V	_	_	Vol, CRT1	
検出電圧	VsH	OFF	OFF	ON	ON	В	В	ON	4V→5V	3V	3V	_	_	Vol, CRT1	
CK入力しきい値	V_{TH}	OFF	OFF	OFF	ON	В	В	ON	5V	0V→3V	1V	_	_	Іск	
CK入力電流	I _{IH}	OFF	OFF	OFF	ON	В	В	ON	5V	5V	0V	_	_	Іск	
UK八刀电加	Iπ	OFF	OFF	OFF	ON	В	В	ON	5V	0V	0V	_	_	Іск	
出力電圧(Hi時)	Voh1	ON	OFF	ON	ON	В	В	ON	5V	5V	3V	$-5 \mu A$	_	Vo1	
山刀电圧 (口时)	Vон2	OFF	ON	ON	ON	С	В	ON	5V	5V	3V	_	$-5 \mu A$	Vo2	
	Vol1	ON	ON	ON	ON	В	В	ON	5V	5V	3V	3mA	_	Vo1	
出力電圧(Lo時)	Vol2	ON	ON	ON	ON	В	В	ON	5V	5V	3V	10mA	_	Vo1	
山刀电圧(LOH)	Vol3	OFF	OFF	ON	ON	С	В	ON	5V	5V	3V	_	0.5mA	Vo2	
	Vol4	OFF	OFF	ON	ON	С	В	ON	5V	5V	3V	_	1mA	Vo2	
出力シンク電流	Iol1	OFF	ON	ON	ON	В	C	ON	5V	5V	3V	_	_	Io1	$V_{00} = 1V$
山刀ノノノ电流	Iol2	OFF	OFF	ON	ON	В	A	ON	5V	5V	3V	_	_	Io2	$V_{00} = 1V$
TC充電電流1	Ітс1	OFF	OFF	OFF	ON	В	В	OFF	5V	_	1V	_	_	Ітс	
TC充電電流2	Ітс2	OFF	OFF	ON	ON	В	В	OFF	5V	_	1V	_	_	Ітс	
RESET保証	Vccl1	ON	OFF	ON	ON	В	В	ON	0V→2V	ov	0V		_	W-1 W	
最小動作電源電圧	V CCL1	ON	OFF	ON	ON	В	В	ON	U V → 2 V	UV	UV			Vol, Vcc	
RESET保証	Vccl2	OFF	ON	ON	ON	A	В	ON	0V→2V	ov	0V	_	_	Vo2. Vcc	
最小動作電源電圧	V CCLZ	OFF	ON	ON	ON	A	Б	ON	U V → 2 V	UV	UV		_	V 02, V CC	

測定回路2一2 SW&電源表

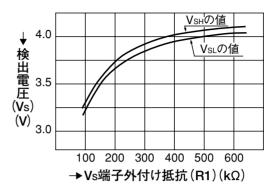

項目	記号	SW1	SW2	Vcca	V cc	V CKA	V cк	CRT	備考
Vcc入力パルス幅	Ты	С	В	5V - T1 4V	-	1.4V T2 T3	_	CRT1, 2, 3	T1=8μs
CK入力パルス幅	Тскw	A	В	_	5V	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	CRT1, 2, 3	$T2 = 3 \mu s$
CK入力周期	Тск	A	В	_	5V	1.4VT2	_	CRT1, 2, 3	$T3 = 20 \mu s$
ウォッチドグタイマ 監視時間	Two	A	A	_	5V	_	5V	CRT1, 2, 3	
ウォッチドグタイマ リセット時間	Twr	A	A	_	5V	_	5V	CRT1, 2, 3	
電源立ち上がり時 リセットホールド時間	TPR	В→А	A	_	5V	_	5V	CRT1, 2, 3	
Vccからの	TPD1	С	A	5V	_	_	0V	CRT1, 3	
出力遅延時間	TPD2	С	A	5V	-	_	0V	CRT2, 3	
出力立ち上がり時間	T _R 1	A	A	_	5V	_	5V	CRT1	
ロソエのエル・い时间	Tr2	A	A	_	5V	_	5V	CRT2	
出力立ち下がり時間	T _P 1	A	A	-	5V	-	5V	CRT1	
田の正の100時間	T _P 2	A	A	_	5V	_	5V	CRT2	

検出電圧変更方法1 (検出電圧を上げる場合)

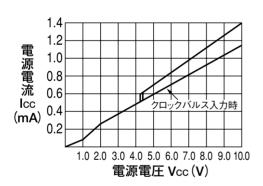


MM1075のVs端子に抵抗R2を外付けすることにより、検出電圧を変更することができます。Vsを変更する場合、グラフ1を参考にしてR2を決定して下さい。

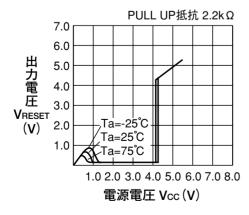
グラフ1. MM1075の外付け抵抗による検出電圧変化



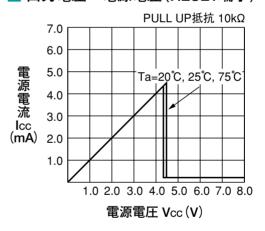
検出電圧変更方法2 (検出電圧を下げる場合)

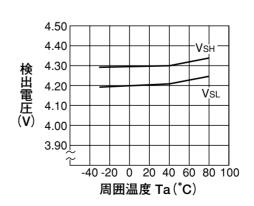

MM1075のVs端子に抵抗R1を外付けする ことにより、検出電圧を変更することが できます。Vsを変更する場合、グラフ2 を参考にしてR1を決定して下さい。

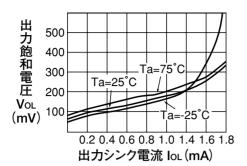
グラフ2. MM1075の外付け抵抗による検出電圧変化

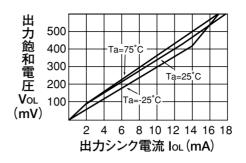


特性図

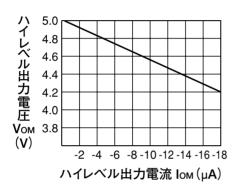

■ 電源電流ー電源電圧

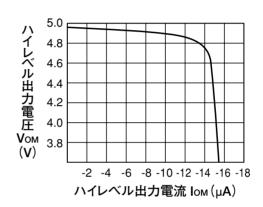

■ 出力電圧ー電源電圧(RESET端子)

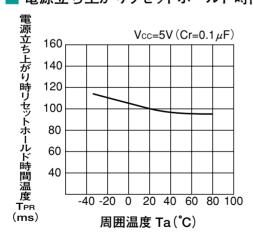

■ 出力電圧ー電源電圧(RESET端子)



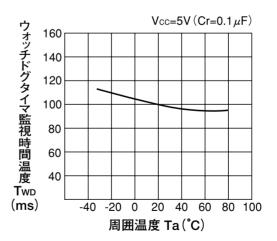
■ 検出電圧(VsL VsII)温度適正(RESET、RESET端子)

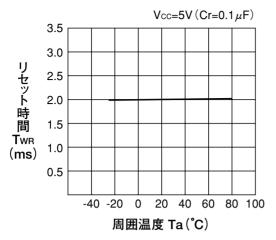


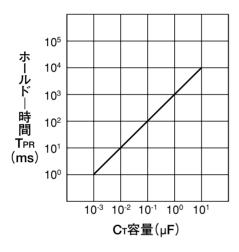

■ 出力飽和電圧-出力シンク電流(RESET端子) ■ 出力飽和電圧-出力シンク電流(RESET端子)



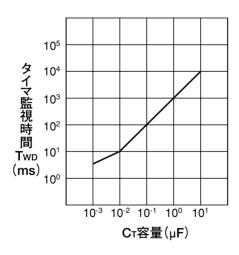
■ ハイレベル出力電圧-ハイレベル出力電流(RESET端子) ■ ハイレベル出力電圧-ハイレベル出力電流(RESET端子)



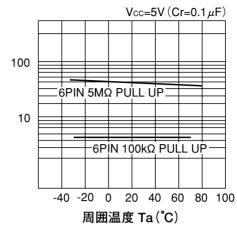

■ 電源立ち上がりリセットホールド時間温度

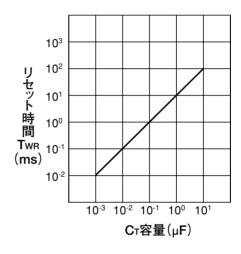


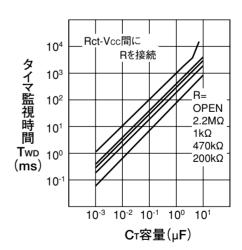
■ ウォッチドグタイマ監視時間温度



■ リセット時間温度(ウォッチドグタイマ時)




■ C⊤容量Vsウォッチドグタイマ監視時間


■ ウォッチドグタイマ監視時間温度

■ CT容量Vs電源立ち上がり時リセットホールドー時間 ■ CT容量Vsリセット時間(ウォッチドグタイマ時)

■ タイマ時間可変タイプ Ст容量Vsウォッチドグタイマ監視時間

