LF198QML

LF198QML Monolithic Sample-and-Hold Circuits

Literature Number: SNOSAH9

LF198QML

Monolithic Sample-and-Hold Circuits

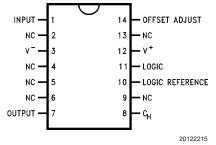
General Description

The LF198 is a monolithic sample-and-hold circuit which utilizes BI-FET technology to obtain ultra-high dc accuracy with fast acquisition of signal and low droop rate. Operating as a unity gain follower, dc gain accuracy is 0.002% typical and acquisition time is as low as 6 μs to 0.01%. A bipolar input stage is used to achieve low offset voltage and wide bandwidth. Input offset adjust is accomplished with a single pin, and does not degrade input offset drift. The wide bandwidth allows the LF198 to be included inside the feedback loop of 1 MHz op amps without having stability problems. Input impedance of $10^{10}\Omega$ allows high source impedances to be used without degrading accuracy.

P-channel junction FET's are combined with bipolar devices in the output amplifier to give droop rates as low as 5 mV/min with a 1 μ F hold capacitor. The JFET's have much lower noise than MOS devices used in previous designs and do not exhibit high temperature instabilities. The overall design guarantees no feed-through from input to output in the hold mode, even for input signals equal to the supply voltages.

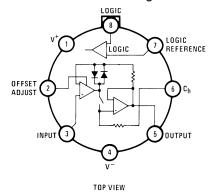
Features

- Operates from ±5V to ±18V supplies
- Less than 10 µs acquisition time
- TTL, PMOS, CMOS compatible logic input
- 0.5 mV typical hold step at C_h = 0.01 µF
- Low input offset
- 0.002% gain accuracy
- Low output noise in hold mode
- Input characteristics do not change during hold mode
- High supply rejection ratio in sample or hold
- Wide bandwidth

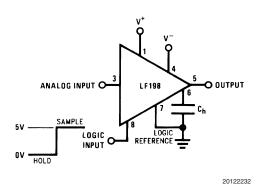

Logic inputs on the LF198 are fully differential with low input current, allowing direct connection to TTL, PMOS, and CMOS. Differential threshold is 1.4V. The LF198 will operate from $\pm 5V$ to $\pm 18V$ supplies.

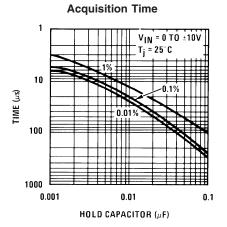
Ordering Information

NSC Part Number	JAN Part Number	NSC Package Number	Package Description
LF198H/883	5962-8760801GA	H08C	8LD Metal Can
LF198WG-QMLV	5962-8760801VZA	WG14A	14LD Ceramic SOIC
LF198WG/883	5962-8760801QZA	WG14A	14LD Ceramic SOIC

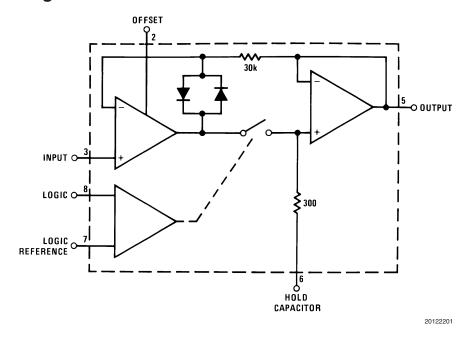

Connection Diagrams

Small-Outline Package


See NS Package Number WG14A


Metal Can Package

See NS Package Number H08C


Typical Connection and Performance Curve

2012221

Functional Diagram

Absolute Maximum Ratings (Note 1)

Supply Voltage $\pm 18V$ Power Dissipation (Package Limitation) (Note 2) 500 mW
Operating Ambient Temperature Range -55° C to $+125^{\circ}$ C
Maximum Junction Temperature (T_{Jmax}) $+150^{\circ}$ C
Input Voltage Equal to Supply Voltage

Logic To Logic Reference Differential Voltage (Note 3) +7V, -30V

Output Short Circuit Duration Indefinite

Hold Capacitor Short Circuit Duration 10 sec

Lead Temperature (Soldering, 10 sec.) 260°C

Thermal Resistance

 θ_{JA}

 Metal Can
 (Still Air @ 0.5W)
 160°C/W

 Metal Can
 (500 LF/Min Air Flow @ 0.5W)
 84°C/W

 Ceramic SOIC
 (Still Air @ 0.5W)
 140°C/W

 Ceramic SOIC
 (500 LF/Min Air Flow @ 0.5W)
 95°C/W

 θ_{JC}

Metal Can 48°C/W Ceramic SOIC 20°C/W

Package Weight (typical)

Metal Can TBD

Ceramic SOIC 415mg

ESD Tolerance (Note 7) 500V

Quality Conformance Inspection

Mil-Std-883, Method 5005 — Group A

Subgroup	Description	Temperature (°C)
1	Static tests at	+25°C
2	Static tests at	+125°C
3	Static tests at	−55°C
4	Dynamic tests at	+25°C
5	Dynamic tests at	+125°C
6	Dynamic tests at	−55°C
7	Functional tests at	+25°C
8A	Functional tests at	+125°C
8B	Functional tests at	−55°C
9	Switching tests at	+25°C
10	Switching tests at	+125°C
11	Switching tests at	−55°C

Electrical Characteristics

The following specifications apply unless otherwise specified. $V_{CC}=\pm15V$, $R_L=10K\Omega$, $V_{IN}=0V$, $C_{HOLD}=0.01~\mu F$, Logic Reference Pin = 0V, Logic Pin = 4V

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
I _{CC} +	Positive Supply Current	+V _{CC} = 15V, -V _{CC} = -15V			5.5	mA	1, 2
		TVCC = 13V, -VCC = -13V			6.5	mA	3
		$+V_{CC} = 18V, -V_{CC} = -18V,$			5.5	mA	1, 2
		Mode = "Sample"			6.5	mA	3
		$+V_{CC} = 18V, -V_{CC} = -18V,$			5.5	mA	1, 2
		Mode = "Hold"			6.5	mA	3
I _{CC} -	Negative Supply Current	$+V_{CC} = 15V, -V_{CC} = -15V$		-5.5		mA	1, 2
				-6.5		mA	3
		$+V_{CC} = 18V, -V_{CC} = -18V,$		-5.5		mA	1, 2
		Mode = "Sample"		-6.5		mA	3
		$+V_{CC} = 18V, -V_{CC} = -18V,$		-5.5		mA	1, 2
		Mode = "Hold"		-6.5		mA	3
V _{OS}	Input Offset Voltage	$+V_{CC} = 3V, -V_{CC} = -7V$		-3.0	3.0	mV	1
				-5.0	5.0	mV	2, 3
		$+V_{CC} = 15V, -V_{CC} = -15V$		-3.0	3.0	mV	1
				-5.0	5.0	mV	2, 3
		$+V_{CC} = 3.5V, -V_{CC} = -26.5V$		-3.0	3.0	mV	1
				-5.0	5.0	mV	2, 3
		+V _{CC} = 18V, -V _{CC} = -18V		-3.0	3.0	mV	1
				-5.0	5.0	mV	2, 3
		$+V_{CC} = 3.5V, -V_{CC} = -32.5V$ $+V_{CC} = 26.5V, -V_{CC} = -3.5V$		-3.0	3.0	mV	1
				-5.0	5.0	mV	2, 3
				-3.0	3.0	mV	1
				-5.0 -3.0	5.0 3.0	mV mV	2, 3
		$+V_{CC} = 32.5V, -V_{CC} = -3.5V,$ Logic = 2.5V		-5.0	5.0	mV	2, 3
		_		-3.0	3.0	mV	2, 3
		$+V_{CC} = 7V, -V_{CC} = -3V$		-5.0	5.0	mV	2, 3
I _{IB}	Input Bias Current			-25	25	nA	1
,IR	input Blas Guiront	$+V_{CC} = 3V, -V_{CC} = -7V$		-75	75	nA	2, 3
				-25	25	nA	1
		$+V_{CC} = 15V, -V_{CC} = -15V$		-75	75	nA	2, 3
				-25	25	nA	1
		$+V_{CC} = 3.5V, -V_{CC} = -32.5V$		-75	75	nA	2, 3
				-25	25	nA	1
		$+V_{CC} = 32.5V, -V_{CC} = -3.5V$		-75	75	nA	2, 3
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		-25	25	nA	1
		$+V_{CC} = 7V, -V_{CC} = -3V$		-75	75	nA	2, 3
I _{Leak(Cap)}	Leakage Current into Hold	+V _{CC} = 3V, -V _{CC} = -7V	(Note 5)	-100	100	pA	1
(Capacitor	$+V_{CC} = 3.5V, -V_{CC} = -32.5V$		-100	100	pA	1
		$+V_{CC} = 32.5V, -V_{CC} = -3.5V$	(Note 5)	-100	100	pA	1
		$+V_{CC} = 7V, -V_{CC} = -3V$	1	-100	100	pA	1

Electrical Characteristics (Continued) The following specifications apply unless otherwise specified. V_{CC} = ±15V, R_L = 10K Ω , V_{IN} = 0V, C_{HOLD} = 0.01 μ F, Logic Reference Pin = 0V, Logic Pin = 4V

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
V _{HS}	Hold Step	+V _{CC} = 15V -V _{CC} = -15V	(Note 4)	-2.0	2.0	mV	1
		+V _{CC} = 13V -V _{CC} = -13V		-5.6	5.6	mV	2, 3
		$+V_{CC} = 3.5V, -V_{CC} = -26.5V$	(Note 4)	-2.5	2.5	mV	1
		+V _{CC} = 3.3V, -V _{CC} = -20.3V		-5.6	5.6	mV	2, 3
			(Note 4)	-2.5	2.5	mV	1
		$+V_{CC} = 26.5V, -V_{CC} = -3.5V$		-5.6	5.6	mV	2, 3
A _E	Gain Error	$+V_{CC} = 7V, -V_{CC} = -3V$			0.02	%	1
		+V _{CC} - 7V, -V _{CC} 3V			0.06	%	2, 3
		$+V_{CC} = 3.5V, -V_{CC} = -26.5V$			0.005	%	1
		+V _{CC} = 0.5V, -V _{CC} = -20.5V			0.02	%	2, 3
		$+V_{CC} = 32.5V, -V_{CC} = -3.5V$			0.005	%	1
		TV _{CC} = 52.5V, TV _{CC} = -5.5V			0.06	%	2, 3
		+V _{CC} = 26.5V, -V _{CC} = -3.5V			0.005	%	1
		+V _{CC} = 20.5V, -V _{CC} = -3.5V			0.02	%	2, 3
Z _I	Input Impedance	+V _{CC} = 8V, -V _{CC} = -28V		10.0		GΩ	1
		+V _{CC} - 6V, -V _{CC} 26V		0.8		$G\Omega$	2, 3
		+V _{CC} = 28V, -V _{CC} = -8V		10.0		$G\Omega$	1
		TVCC - 20V, -VCC0V		0.8		$G\Omega$	2, 3
Z _O	Output Impedance	+V _{CC} = 18V, -V _{CC} = -18V			2.0	Ω	1
		+V _{CC} - 10V, -V _{CC} 10V			4.0	Ω	2, 3
I _{Charge}	Capacitor Charging Current	+V _{CC} = 8V, -V _{CC} = -28V		-25	-4.5	mA	1
				-25	-3.0	mA	2, 3
		+V _{CC} = 28V, -V _{CC} = -8V		4.5	25	mA	1
				3.0	25	mA	2, 3
Logic	Logic Pin Current	+V _{CC} = 18V, -V _{CC} = -18V, Mode = "Sample", Logic = 7V			10	μΑ	1, 2, 3
		$+V_{CC} = 18V, -V_{CC} = -18V,$			1.0	μΑ	1
		Mode = "Hold", Logic = -30V			0.5	μΑ	2, 3
V _{OS}	Input Offset Voltage	$+V_{CC} = 15V, -V_{CC} = -15V,$		-3.5	3.5	mV	1
		I _{Drive} = +1mA		-6.0	6.0	mV	2, 3
Delta V _{os}	Input Offset Voltage	$+V_{CC} = 15V, -V_{CC} = -15V,$		-1.1	1.1	mV	1
		$I_{Drive} = +1mA \text{ to } -1mA$		-2.0	2.0	mV	2, 3
l _{os} +	Output Short Circuit Current	+V _{CC} = 18V, -V _{CC} = -18V		7.0	20	mA	1
I _{os} -	Output Short Circuit Current	$+V_{CC} = 18V, -V_{CC} = -18V$		-25	-7.0	mA	1
I _{LogicRef}	Logic Reference Pin Current	$+V_{CC} = 18V, -V_{CC} = -18V,$		-1.0	1.0	μA	1
Ü		Mode = "Sample", Logic = 7V		-0.5	5.0	μA	2, 3
		$+V_{CC} = 18V, -V_{CC} = -18V,$			40		1 0 0
		Mode = "Hold", Logic = -30V			10	μΑ	1, 2, 3
PSRR	Power Supply Rejection Ratio			80		dB	1
		$+V_{CC} = 10V, -V_{CC} = -15V$		74		dB	2, 3
				80		dB	1
		$+V_{CC} = 15V, -V_{CC} = -10V$		74		dB	2, 3
FTRR	Feed Through Rejection Ratio			86		dB	1
		$+V_{CC} = 3.5V, -V_{CC} = -32.5V$		74		dB	2, 3
				86		dB	1
		$+V_{CC} = 32.5V, -V_{CC} = -3.5V$		74		dB	2, 3
V _{TH}	Differential Logic Level	1 2 35	(Note 8)	0.8	2.4	V	1

Electrical Characteristics (Continued)

The following specifications apply unless otherwise specified. $V_{CC}=\pm15V,~R_L=10K\Omega,~V_{IN}=0V,~C_{HOLD}=0.01~\mu F,~Logic~Reference~Pin=0V,~Logic~Pin=4V$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
Vos	2nd Stage V _{OS}	+V _{CC} = 3.5V, -V _{CC} = -32.5V		-35	+35	mV	1
(2nd Stg)		+V _{CC} = 3.3V, -V _{CC} = -32.3V		-50	+50	mV	2, 3
		+V _{CC} = 3V, -V _{CC} = -7V		-35	+35	mV	1
				-50	+50	mV	2, 3
		$+V_{CC} = 32.5V, -V_{CC} = -3.5V$		-35	+35	mV	1
				-50	+50	mV	2, 3
				-35	+35	mV	1
		$+V_{CC} = 7V$, $-V_{CC} = -3V$		-50	+50	mV	2, 3

AC Parameters

The following specifications apply unless otherwise specified. $V_{CC} = \pm 15V$, $R_L = 10K\Omega$, $V_{IN} = 0V$, $C_{Hold} = 0.01~\mu F$, Logic Reference Pin = 0V, Logic Pin = 4V

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
T _{AQ}	Acquisition Time	Delta V _{OUT} = 10V, C _{Hold} = 1000pF			6.0	μS	4
		Delta V _{OUT} = 10V, C _{Hold} = 0.01µF			25	μS	4

DC Parameters: Drift Values

The following conditions apply to all the following parameters, unless otherwise specified. $V_{CC} = \pm 15V$, $R_L = 10K\Omega$, $V_{IN} = 0V$, $C_{Hold} = 0.01~\mu F$, Logic Reference Pin = 0V, Logic Pin = 4V Deltas required for S-Level product ONLY.

Symbol	Parameters	Conditions	Notes	Min	Max	Unit	Sub- groups
V _{OS}	Input Offset Voltage	$+V_{CC} = 15V, -V_{CC} = -15V$		-0.5	0.5	mV	1
I _{IB}	Input Bias Current	$+V_{CC} = 15V, -V_{CC} = -15V$		-2.5	2.5	nA	1

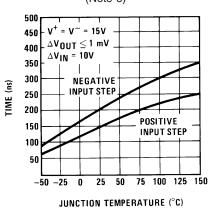
Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions

Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JMAX} , θ_{JA} , and the ambient temperature, T_A . The maximum allowable power dissipation at any temperature is $P_D = (T_{JMAX} - T_A)/\theta_{JA}$, or the number given in the Absolute Maximum Ratings, whichever is lower.

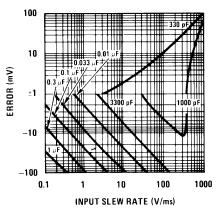
Note 3: Although the differential voltage may not exceed the limits given, the common-mode voltage on the logic pins may be equal to the supply voltages without causing damage to the circuit. For proper logic operation, however, one of the logic pins must always be at least 2V below the positive supply and 3V above the negative supply.

Note 4: Hold step is sensitive to stray capacitive coupling between input logic signals and the hold capacitor. 1 pF, for instance, will create an additional 0.5 mV step with a 5V logic swing and a 0.01µF hold capacitor. Magnitude of the hold step is inversely proportional to hold capacitor value.

Note 5: Leakage current is measured at a junction temperature of 25°C. The effects of junction temperature rise due to power dissipation or elevated ambient can be calculated by doubling the 25°C value for each 11°C increase in chip temperature. Leakage is guaranteed over full input signal range.

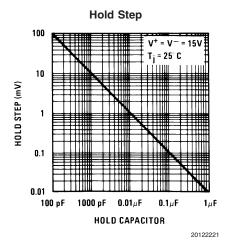

Note 6: See Definition of Terms

Note 7: Human body model, 100pF discharged through 1.5K Ω

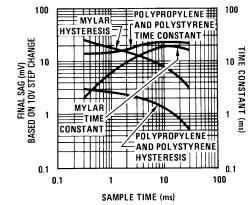

Note 8: Parameter tested go no go only for Vth test.

Typical Performance Characteristics

Aperture Time (Note 6)

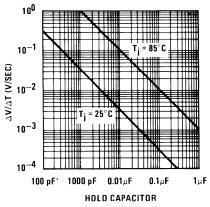


Dynamic Sampling Error

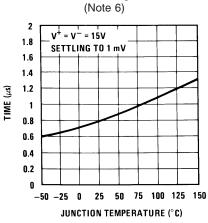


20122219

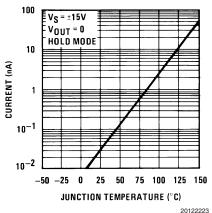
20122217



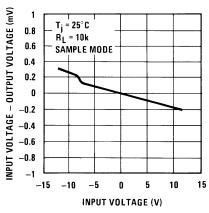
Dielectric Absorption Error in Hold Capacitor


20122218

Output Droop Rate

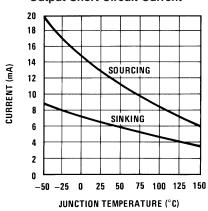

20122220

"Hold" Settling Time

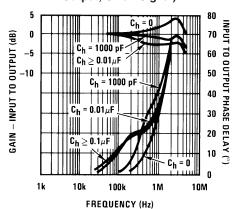


Typical Performance Characteristics (Continued)

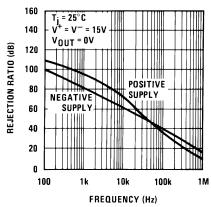
Leakage Current into Hold Capacitor



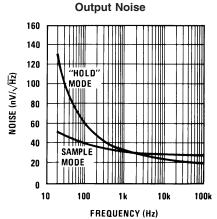
Gain Error


20122225

Output Short Circuit Current

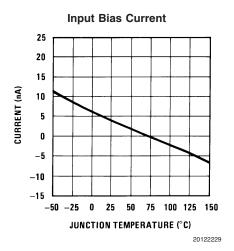

20122227

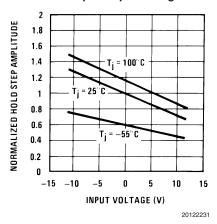
Phase and Gain (Input to **Output, Small Signal)**



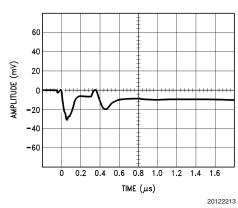
20122224

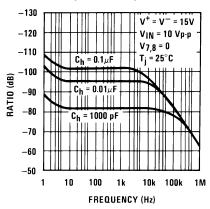
Power Supply Rejection


20122226

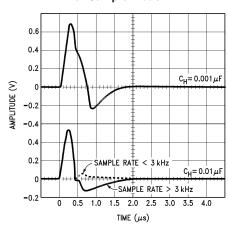

20122228

Note 9: See Definition


Typical Performance Characteristics (Continued)

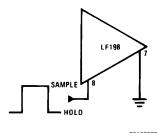

Hold Step vs Input Voltage

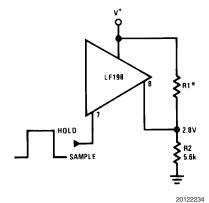
Output Transient at Start of Hold Mode



Feedthrough Rejection Ratio (Hold Mode)

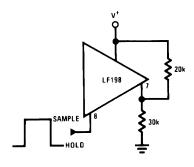
20122230


Output Transient at Start of Sample Mode

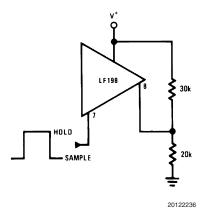

Logic Input Configurations

TTL & CMOS

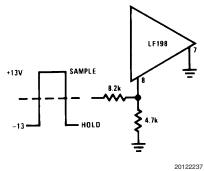
 $3V \le V_{LOGIC}$ (Hi State) $\le 7V$


Threshold = 1.4V

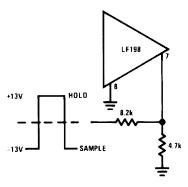
Threshold = 1.4V*Select for 2.8V at pin 8


CMOS

 $7\text{V} \leq \text{V}_{\text{LOGIC}}$ (Hi State) $\leq 15\text{V}$


20122235

Threshold = $0.6 (V^+) + 1.4V$



Threshold = $0.6 (V^+) - 1.4V$

Op Amp Drive

Threshold $\approx +4V$

Threshold = -4V

Application Hints

HOLD CAPACITOR

Hold step, acquisition time, and droop rate are the major trade-offs in the selection of a hold capacitor value. Size and cost may also become important for larger values. Use of the curves included with this data sheet should be helpful in selecting a reasonable value of capacitance. Keep in mind that for fast repetition rates or tracking fast signals, the capacitor drive currents may cause a significant temperature rise in the LF198.

A significant source of error in an accurate sample and hold circuit is dielectric absorption in the hold capacitor. A mylar cap, for instance, may "sag back" up to 0.2% after a quick change in voltage. A long sample time is required before the circuit can be put back into the hold mode with this type of capacitor. Dielectrics with very low hysteresis are polystyrene, polypropylene, and Teflon. Other types such as mica and polycarbonate are not nearly as good. The advantage of polypropylene over polystyrene is that it extends the maximum ambient temperature from 85°C to 100°C. Most ceramic capacitors are unusable with > 1% hysteresis. Ceramic "NPO" or "COG" capacitors are now available for 125°C operation and also have low dielectric absorption. For more exact data, see the curve Dielectric Absorption Error. The hysteresis numbers on the curve are final values, taken after full relaxation. The hysteresis error can be significantly reduced if the output of the LF198 is digitized guickly after the hold mode is initiated. The hysteresis relaxation time constant in polypropylene, for instance, is 10-50 ms. If A-to-D conversion can be made within 1 ms, hysteresis error will be reduced by a factor of ten.

DC AND AC ZEROING

DC zeroing is accomplished by connecting the offset adjust pin to the wiper of a 1 k Ω potentiometer which has one end tied to V⁺ and the other end tied through a resistor to ground. The resistor should be selected to give \approx 0.6 mA through the 1k potentiometer.

AC zeroing (hold step zeroing) can be obtained by adding an inverter with the adjustment pot tied input to output. A 10 pF capacitor from the wiper to the hold capacitor will give ± 4 mV hold step adjustment with a 0.01 μ F hold capacitor and 5V logic supply. For larger logic swings, a smaller capacitor (< 10 pF) may be used.

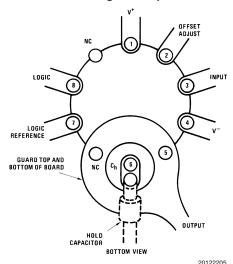
LOGIC RISE TIME

For proper operation, logic signals into the LF198 must have a minimum dV/dt of 1.0 V/ μ s. Slower signals will cause excessive hold step. If a R/C network is used in front of the logic input for signal delay, calculate the slope of the waveform at the threshold point to ensure that it is at least 1.0 V/ μ s.

SAMPLING DYNAMIC SIGNALS

Sample error to moving input signals probably causes more confusion among sample-and-hold users than any other parameter. The primary reason for this is that many users make the assumption that the sample and hold amplifier is truly locked on to the input signal while in the sample mode. In actuality, there are finite phase delays through the circuit creating an input-output differential for fast moving signals.

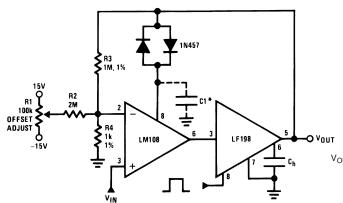
In addition, although the output may have settled, the hold capacitor has an additional lag due to the 300Ω series resistor on the chip. This means that at the moment the "hold" command arrives, the hold capacitor voltage may be somewhat different than the actual analog input. The effect of these delays is opposite to the effect created by delays in the logic which switches the circuit from sample to hold. For example, consider an analog input of 20 Vp-p at 10 kHz. Maximum dV/dt is 0.6 V/µs. With no analog phase delay and 100 ns logic delay, one could expect up to (0.1 µs) (0.6V/µs) = 60 mVerror if the "hold" signal arrived near maximum dV/dt of the input. A positive-going input would give a +60 mV error. Now assume a 1 MHz (3 dB) bandwidth for the overall analog loop. This generates a phase delay of 160 ns. If the hold capacitor sees this exact delay, then error due to analog delay will be $(0.16 \mu s) (0.6 V/\mu s) = -96 \text{ mV}$. Total output error is +60 mV (digital) -96 mV (analog) for a total of -36 mV. To add to the confusion, analog delay is proportioned to hold capacitor value while digital delay remains constant. A family of curves (dynamic sampling error) is included to help estimate errors.

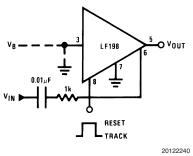

A curve labeled *Aperture Time* has been included for sampling conditions where the input is steady during the sampling period, but may experience a sudden change nearly coincident with the "hold" command. This curve is based on a 1 mV error fed into the output.

A second curve, *Hold Settling Time* indicates the time required for the output to settle to 1 mV after the "hold" command.

DIGITAL FEEDTHROUGH

Fast rise time logic signals can cause hold errors by feeding externally into the analog input at the same time the amplifier is put into the hold mode. To minimize this problem, board layout should keep logic lines as far as possible from the analog input and the $\rm C_h$ pin. Grounded guarding traces may also be used around the input line, especially if it is driven from a high impedance source. Reducing high amplitude logic signals to 2.5V will also help.

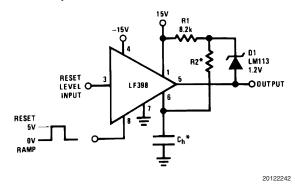

Guarding Technique


Use 10-pin layout. Guard around C_his tied to output.

Typical Applications

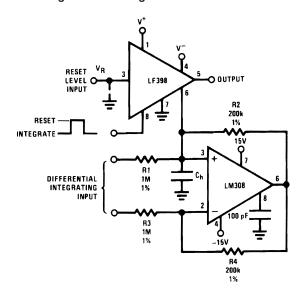
X1000 Sample & Hold

Sample and Difference Circuit (Output Follows Input in *Hold* Mode)


 $V_{OUT} = V_B + \Delta V_{IN}(HOLD MODE)$

20122239

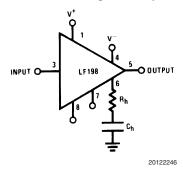
*For lower gains, the LM108 must be frequency compensated


Use
$$\approx \frac{100}{A_V} pF$$
 from comp 2 to ground

Ramp Generator with Variable Reset Level

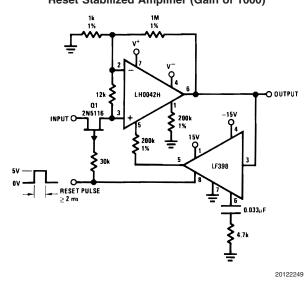
*Select for ramp rate $\frac{\Delta V}{\Delta T} = \frac{1.2V}{(R2) (C_h)}$

Integrator with Programmable Reset Level

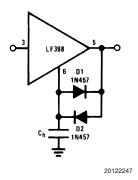


20122243

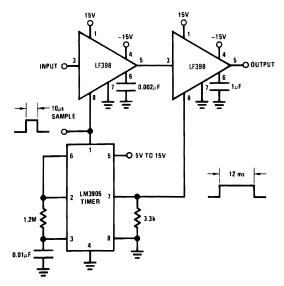
$$V_{OUT} \left(\text{Hold Mode} \right) = \left[\frac{1}{\left(\text{R1} \right) \left(C_{\text{h}} \right)} \int_{0}^{t} \!\! V_{\text{IN}} \, \text{d}t \, \right] + \left[\left. V_{\text{R}} \right] \right]$$


Typical Applications (Continued)

Output Holds at Average of Sampled Input

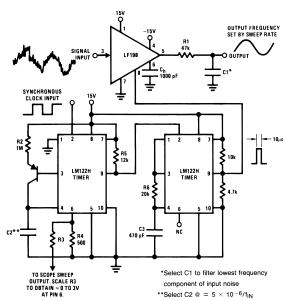

Select (R_h) (C_h) $\gg \frac{1}{2\pi f_{IN} \text{ (Min)}}$

Reset Stabilized Amplifier (Gain of 1000)

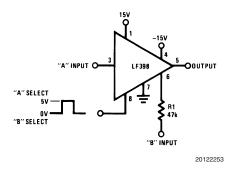


$$\begin{split} &V_{OS} \leq 20 \mu V \text{ (No trim)} \\ &Z_{IN} \approx 1 \text{ M}\Omega \\ &\frac{\Delta V_{OS}}{\Delta t} \approx 30 \mu V/\text{sec} \\ &\frac{\Delta V_{OS}}{\Delta T} \approx 0.1 \mu V/^{\circ}\text{C} \end{split}$$

Increased Slew Current

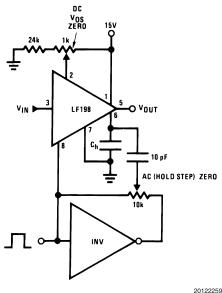


Fast Acquisition, Low Droop Sample & Hold



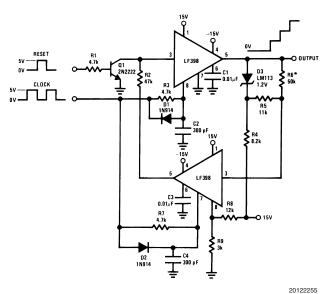
Typical Applications (Continued)

Synchronous Correlator for Recovering Signals Below Noise Level

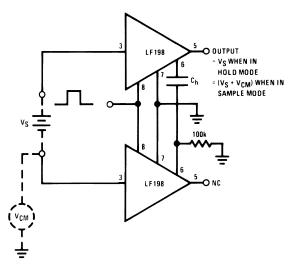

2-Channel Switch

20122252

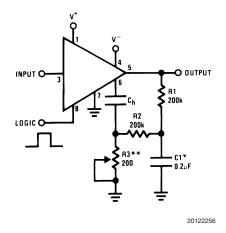
В Α Gain 1 ± 0.02% 1 ± 0.2% $10^{10}\Omega$ 47 kΩ Z_{IN} BW ≃ 1 MHz $\simeq 400 \text{ kHz}$ -90 dB Crosstalk -90 dB @ 1 kHz Offset $\leq 6~\text{mV}$ $\leq 75~\text{mV}$


DC & AC Zeroing

*Select for step height


 $50k \rightarrow \cong 1V \text{ Step}$

Staircase Generator



Typical Applications (Continued)

Differential Hold

Capacitor Hysteresis Compensation

*Select for time constant C1 = $\frac{\tau}{100k}$

20122257

**Adjust for amplitude

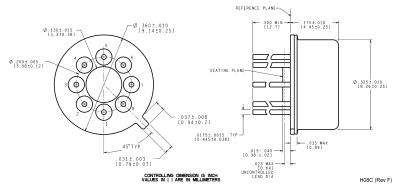
Definition of Terms

Hold Step: The voltage step at the output of the sample and hold when switching from sample mode to hold mode with a steady (dc) analog input voltage. Logic swing is 5V.

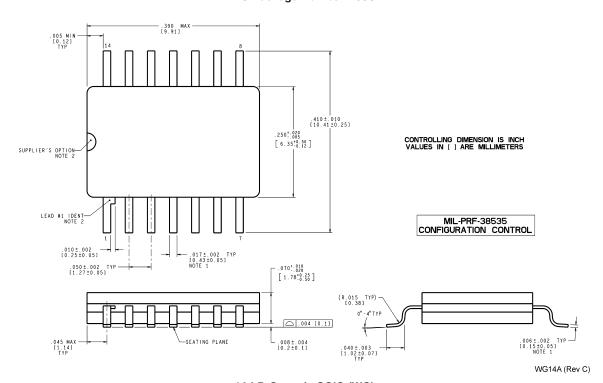
Acquisition Time: The time required to acquire a new analog input voltage with an output step of 10V. Note that acquisition time is not just the time required for the output to settle, but also includes the time required for all internal nodes to settle so that the output assumes the proper value when switched to the hold mode.

Gain Error: The ratio of output voltage swing to input voltage swing in the sample mode expressed as a per cent difference.

Hold Settling Time: The time required for the output to settle within 1 mV of final value after the "hold" logic command.


Dynamic Sampling Error: The error introduced into the held output due to a changing analog input at the time the hold command is given. Error is expressed in mV with a given hold capacitor value and input slew rate. Note that this error term occurs even for long sample times.

Aperture Time: The delay required between "Hold" command and an input analog transition, so that the transition does not affect the held output.


Revision History Section

Date Released	Revision	Section	Originator	Changes
02/25/05	A	New release, Corporate format	L. Lytle	1 MDS converted to corp. datasheet format. MNLF198–X Rev 3B0 MDS to be archived. Change has been made to Electrical Section, Parameter I _{OS} Max limit was 7.0 now is –7.0 confirmed with SG. Added note Parameter tested go no go to V _{TH} test.

Physical Dimensions inches (millimeters) unless otherwise noted

Metal Can Package (H) NS Package Number H08C

14 LD Ceramic SOIC (WG) NS Package Number WG14A

Notes

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

TI E2E Community Home Page <u>e2e.ti.com</u>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated