

Vishay Dale

RoHS

COMPLIANT

High Current, Surface Mount Inductors

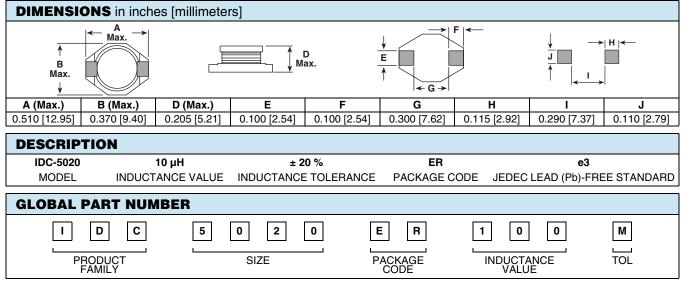
ELECTRICAL SPECIFICATIONS

Inductance Range: 1.0 μ H to 1000 μ H, tested at 1.0 V_{RMS} Inductance Tolerance: 20 %, tighter tolerance available upon request Operating Temperature: - 40 °C to + 125 °C

Resistance to Solder Heat: 260 °C for 10 s

FEATURES

- · High energy storage
- Low resistance
- · Tape and reel packaging for automatic handling
- Compliant to RoHS directive 2002/95/EC


MECHANICAL SPECIFICATIONS

Core: Ferrite Wire: Enamelled copper wire Base: LCP Terminals: Nickel bronze Adhesive: Epoxy resin

STANDARD ELECTRICAL SPECIFICATIONS					
INDUCTANCE (µH)	TOLERANCE	TEST FREQUENCY L (kHz)	DCR MAX. (Ω)	I _{SAT} (A)	I _{RMS} (A)
1.0	± 20 %	100	0.009	9.0	6.8
1.5	± 20 %	100	0.010	8.0	6.4
2.2	± 20 %	100	0.012	7.0	6.1
3.3	± 20 %	100	0.015	6.4	5.4
4.7	± 20 %	100	0.018	5.4	4.8
6.8	± 20 %	100	0.027	4.6	4.4
10	± 20 %	100	0.038	3.8	3.9
15	± 20 %	100	0.046	3.0	3.1
22	± 20 %	100	0.085	2.6	2.7
33	± 20 %	100	0.10	2.0	2.1
47	± 20 %	100	0.14	1.6	1.8
68	± 20 %	100	0.20	1.4	1.5
100	± 20 %	100	0.28	1.2	1.3
150	± 20 %	100	0.40	1.0	1.0
220	± 20 %	100	0.61	0.8	0.8
330	± 20 %	100	1.02	0.6	0.6
470	± 20 %	100	1.27	0.5	0.5
680	± 20 %	100	2.02	0.4	0.4
1000	± 20 %	100	3.00	0.3	0.3

Notes

Inductance drop = 10 % typ. at I_{SAT} $\Delta T = 15 °C$ typ. at I_{RMS}

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.