INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4020B MSI

14-stage binary counter

Product specification
File under Integrated Circuits, IC04

January 1995

14-stage binary counter

HEF4020B MSI

14-STAGE BINARY COUNTER

The HEF4020B is a 14-stage binary ripple counter with a clock input (\overline{CP}) , an overriding asynchronous master reset input (MR) and twelve fully buffered outputs (O₀, O₃ to O₁₃). The counter advances on the HIGH to LOW transition of \overline{CP} . A HIGH on MR clears all counter stages and forces all outputs LOW, independent of the state of \overline{CP} . Each counter stage is a static toggle flip-flop. A feature of the HEF4020B is: high speed (typ. 35 MHz at $V_{DD} = 15 V$).

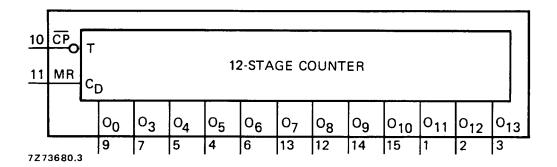


Fig. 1 Functional diagram.

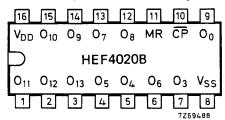


Fig. 2 Pinning diagram.

HEF4020BP(N): 16-lead DIL; plastic (SOT38-1)

HEF4020BD(F): 16-lead DIL; ceramic (cerdip)

(SOT74)

HEF4020BT(D): 16-lead SO; plastic (SOT109-1)

(): Package Designator North America

PINNING

CP clock input (HIGH to LOW edge triggered)

MR master reset input (active HIGH)

O₀, O₃ to O₁₃ parallel outputs

FAMILY DATA

see Family Specifications

IDD LIMITS category MSI

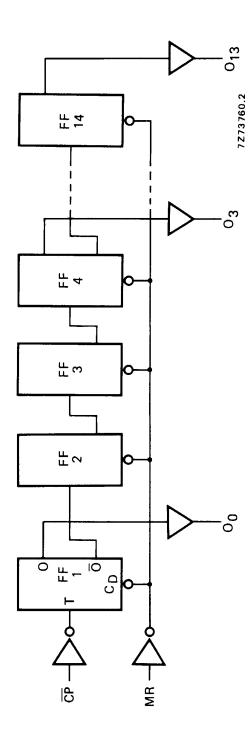


Fig. 3 Logic diagram.

A.C. CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns; see also waveforms Fig. 4

	V _{DD} V	symbol	min.	typ.	max.		typical extrapolation formula
Propagation delays CP → O ₀ HIGH to LOW	5 10 15	^t PHL		105 45 30	210 90 65	ns ns ns	78 ns + (0,55 ns/pF) C _L 34 ns + (0,23 ns/pF) C _L 22 ns ÷ (0,16 ns/pF) C _L
LOW to HIGH	5 10 15	^t PLH		105 50 35	210 95 70	ns ns ns	78 ns + (0,55 ns/pF) C _L 39 ns + (0,23 ns/pF) C _L 27 ns + (0,16 ns/pF) C _L
O _n → O _n + 1 HIGH to LOW	5 10 15	^t PHL		80 30 20	160 60 40	ns ns ns	53 ns + (0,55 ns/pF) C _L 19 ns + (0,23 ns/pF) C _L 12 ns + (0,16 ns/pF) C _L
LOW to HIGH	5 10 15	^t PLH		70 25 20	140 50 40	ns ns ns	43 ns + (0,55 ns/pF) C _L 14 ns + (0,23 ns/pF) C _L 12 ns + (0,16 ns/pF) C _L
MR → O _n HIGH to LOW	5 10 15	^t PHL		180 90 70	360 180 140	ns ns ns	153 ns + (0,55 ns/pF) C _L 79 ns + (0,23 ns/pF) C _L 62 ns + (0,16 ns/pF) C _L
Output transition times HIGH to LOW	5 10 15	[‡] THL		60 30 20	120 60 40	ns ns ns	10 ns + (1,0 ns/pF) C _L 9 ns + (0,42 ns/pF) C _L 6 ns + (0,28 ns/pF) C ₁
LOW to HIGH	5 10 15	^t TLH		60 30 20	120 60 40	ns ns ns	10 ns + (1,0 ns/pF) C _L 9 ns + (0,42 ns/pF) C _L 6 ns + (0,28 ns/pF) C _L
Minimum clock pulse width; HIGH	5 10 15	^t WCPH	50 25 20	25 15 10		ns ns ns	
Minimum MR pulse width; HIGH	5 10 15	^t WMRH	130 95 90	65 50 45		ns ns ns	
Recovery time for MR	5 10 15	^t RMR	115 65 55	60 35 25		ns ns ns	
Maximum clock pulse frequency	5 10 15	fmax	5 13 18	10 25 35		MHz MHz MHz	

	V _{DD}	typical formula for P (μW)	where $f_i = \text{input freq. (MHz)}$ $f_O = \text{output freq. (MHz)}$ $C_L = \text{load cap. (pF)}$ $\Sigma(f_OC_L) = \text{sum of outputs}$ $V_{DD} = \text{supply voltage (V)}$
Dynamic power dissipation per package (P)	5 10 15	600 $f_i + \Sigma (f_o C_L) \times V_{DD}^2$ 2800 $f_i + \Sigma (f_o C_L) \times V_{DD}^2$ 8200 $f_i + \Sigma (f_o C_L) \times V_{DD}^2$	

HEF4020B MSI

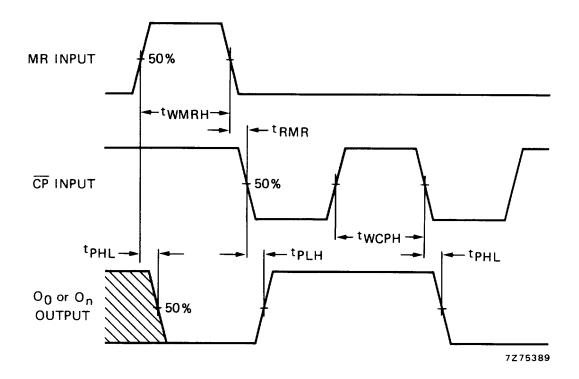
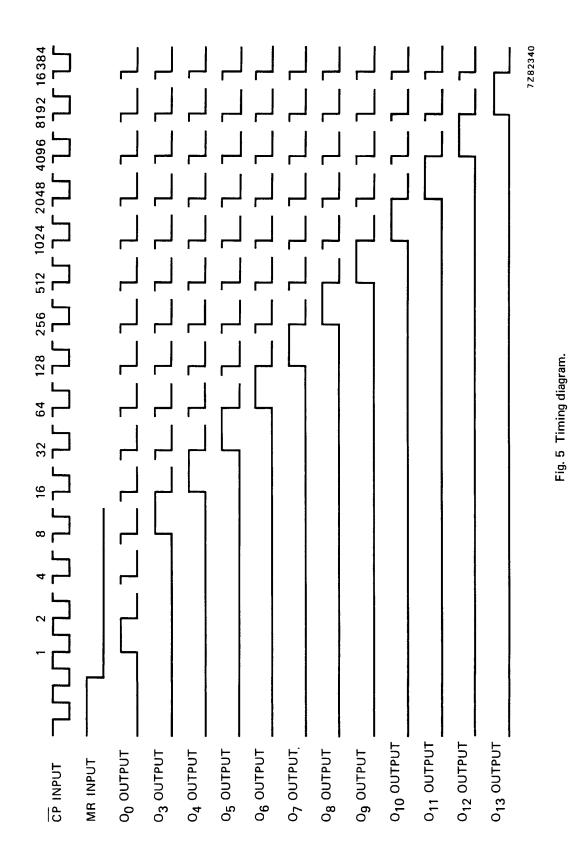



Fig. 4 Waveforms showing propagation delays for MR to O_n and \overline{CP} to O_0 , minimum MR and \overline{CP} pulse widths.

