Notice for TAIYO YUDEN products

Please read this notice before using the TAIYO YUDEN products.

/!\ REMINDERS

■Product information in this catalog is as of October 2008. All of the contents specified herein are subject to change without notice due to technical improvements, etc. Therefore, please check for the latest information carefully before practical application or usage of the Products.

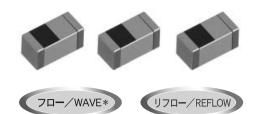
Please note that Taiyo Yuden Co., Ltd. shall not be responsible for any defects in products or equipment incorporating such products, which are caused under the conditions other than those specified in this catalog or individual specification.

- Please contact Taiyo Yuden Co., Ltd. for further details of product specifications as the individual specification is available.
- Please conduct validation and verification of products in actual condition of mounting and operating environment before commercial shipment of the equipment.
- All electronic components or functional modules listed in this catalog are developed, designed and intended for use in general electronics equipment.(for AV, office automation, household, office supply, information service, telecommunications, (such as mobile phone or PC) etc.). Before incorporating the components or devices into any equipment in the field such as transportation,(automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network (telephone exchange, base station) etc. which may have direct influence to harm or injure a human body, please contact Taiyo Yuden Co., Ltd. for more detail in advance.

Do not incorporate the products into any equipment in fields such as aerospace, aviation, nuclear control, submarine system, military, etc. where higher safety and reliability are especially required.

In addition, even electronic components or functional modules that are used for the general electronic equipment, if the equipment or the electric circuit require high safety or reliability function or performances, a sufficient reliability evaluation check for safety shall be performed before commercial shipment and moreover, due consideration to install a protective circuit is strongly recommended at customer's design stage.

- The contents of this catalog are applicable to the products which are purchased from our sales offices or distributors (so called "TAIYO YUDEN's official sales channel"). It is only applicable to the products purchased from any of TAIYO YUDEN's official sales channel.
- Please note that Taiyo Yuden Co., Ltd. shall have no responsibility for any controversies or disputes that may occur in connection with a third party's intellectual property rights and other related rights arising from your usage of products in this catalog. Taiyo Yuden Co., Ltd. grants no license for such rights.
- Caution for export


Certain items in this catalog may require specific procedures for export according to "Foreign Exchange and Foreign Trade Control Law" of Japan, "U.S. Export Administration Regulations," and other applicable regulations. Should you have any question or inquiry on this matter, please contact our sales staff.

Should you have any question or inquiry on this matter, please contact our sales staff.

高周波積層チップインダクタ **MULTILAYER CHIP INDUCTOR FOR HIGH FREQUENCY HK SERIES**

0603 : −55~125°C 1005 : -55~125°C ** OPERATING TEMP. -55~85°C ******

> 1608 : −40~85°C 2125 : -40~85℃

*HK0603, HK1005を除く

*Except for HK0603, HK1005

**保証定格電流により変わります。

** Operating temperature depends on rated current.

特長 FEATURES

- ・内部導体として比抵抗値の低いAgを使用し、良好なQ特性と自己共振周 波数特性を実現
- ・積層シート工法による、高生産性、高品質、高インダクタンス値対応
- ・モノリシック構造のため、高い信頼性を有する

- · Multilayer inductor made of advanced ceramics with low-resistivity silver used as internal conductors provides excellent Q and SRF characteristics.
- · Designed to address surface mount inductor needs for applications above 100MHz.
- Multilayer block structure ensures outstanding reliability, high productivity and product quality.

APPLICATIONS

- ・携帯電話、PHS、無線LAN ・その他の高周波回路、中間周波増幅回路
- ・高周波帯域でのEMI対策

- · Portable telephones, PHS and W-LAN
- · Miscellaneous high-frequency circuits
- · EMI countermeasure in high-frequency circuits.

形名表記法 ORDERING CODE

形式 HK 高周波積層チップインダクタ

形状寸法(Li	×W) [mm]
0603 (0201)	0.6×0.3
1005 (0402)	1.0×0.5
1608 (0603)	1.6×0.8
2125 (0805)	2.0×1.2

公称イ	ンダクタンス [nH]
例	
3N9	3.9
10N	10
R10	100
R12	120

※R=小数点 ※N=nHとしての小数点

インダ	「クタンス許容差							
Н	± 3%							
J	± 5%							
С	±0.2nH							
S	±0.3nH							

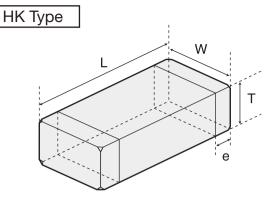
包装 リールテーピング

H K A	0 (6 0	3	1 ($N \setminus N$	$_{\perp}$ J $_{\perp}$	$ \top$
		2				4	5

Type Multilaver chip inductors HK for high frequency

External Dim	ensions (mm)
0603 (0201)	0.6×0.3
1005 (0402)	1.0×0.5
1608 (0603)	1.6×0.8
2125 (0805)	2.0×1.2

Nomin	al Inductance(nH)
Example	
3N9	3.9
10N	10
R10	100
R12	120


*R=decimal point *N=0.0 (nH type)

Inductance Tolerances							
Н	± 3%						
J	± 5%						
С	±0.2nH						
S	±0.3nH						

外形寸法 EXTERNAL DIMENSIONS

Type	L	W	Т	е
HK0603	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	0.15 ± 0.05
(0201)	(0.024 ± 0.001)	(0.012 ± 0.001)	(0.012 ± 0.001)	(0.006 ± 0.002)
HK1005	1.00 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	0.25 ± 0.10
(0402)	(0.039 ± 0.002)	(0.020 ± 0.002)	(0.020 ± 0.002)	(0.010 ± 0.004)
HK1608	1.6 ± 0.15	0.8 ± 0.15	0.8 ± 0.15	0.3 ± 0.2
(0603)	(0.063 ± 0.006)	(0.031 ± 0.006)	(0.031 ± 0.006)	(0.012 ± 0.008)
	2.0 ± 0.3	1.25 ± 0.2	0.85 ± 0.2	0.5 ± 0.3
HK2125	- 0.1		1.0 ± 0.2	
(0805)	(0.079 + 0.012)	(0.049 ± 0.008)	(0.033 ± 0.008)	(0.020 ± 0.012)
	- 0.004		$(0.039 \pm 0.008 \atop -0.012)$	
			- 11	nit: mm (inch)

Unit: mm (inch)

概略バリエーション AVAILABLE INDUCTANCE RANGE

2000	Туре	HK060:	3	НК	1005		HK1608	3	HK212	5	
ange		使用温度範囲 一5	5~+125℃	使用温度範囲 一55~	~+125°C −5	55~+85°C	使用温度範囲 一	40∼+85°C	使用温度範囲 一	40~+85°C	
			Imax		Imax	Imax		Imax	Ima		
	[nH]		[mA]		[mA]	[mA]		[mA]		[mA]	
	1.0	1N0□	470	1N0□	_	900	1N0□	↑			
	1.2	1N2□	450	1N2□		900	1N2□				
	1.5	1N5□	430	1N5□		850	1N5□		1N5S	│	
	1.8	1N8□	390	1N8		700	1N8□		1N8S		
	2.2	2N2□	360	2N2□		700	2N2□		2N2S		
	2.7	2N7□	340	2N7□		650	2N7□		2N7S		
	3.3	3N3□	320	3N3□		550	3N3□		3N3S		
	3.9	3N9□	300	3N9□		500	3N9□		3N9S		
	4.7	4N7□	280	4N7□	300	500	4N7□		4N7S		
	5.6	5N6□	260	5N6□		430	5N6□		5N6S		
_	6.8	6N8O	250	6N8O		430	6N8○		6N8J		
Ē	8.2	8N2O	230	8N2O		380	8N2O		8N2J		
	10.0	10NO	220	10NO		340	10NO		10NJ		
inductance	12.0	12NO	190	12NO		330	12N〇		12NJ		
cta	15.0	15NO	180	15NO		320	15NO	300	15NJ		
при	18.0	18NO	170	18NO		310	18NO		18NJ		
.=	22.0	22N〇	150	22NO		300	22N〇		22NJ		
	27.0	27N〇	120	27N〇	→	300	27N〇		27NJ	300	
	33.0	33NO	110	33NO	→	250	33N○		33NJ		
	39.0	39NO	100	39NO	200	250	39N○		39NJ		
	47.0	47NO	100	47N〇	7 200	230	47N〇		47NJ		
	56.0	56N○	80	56NO	\neg	220	56N○		56NJ		
	68.0	68NO	80	68NO	180		68N○		68NJ		
	82.0	82NO	70	82NO	↑		82NO		82NJ		
	100.0	R10○	60	R10〇	150		R10〇		R10J		
	120.0			R12〇	\neg	200	R12〇		R12J		
	150.0			R15〇	140	200	R15○		R15J		
	180.0			R18〇	130		R18〇		R18J		
	220.0			R22〇	120		R22〇	₩	R22J		
	270.0			R27〇	110	\forall	R27〇	↑	R27J		
	330.0				_	-	R33 🔾	150	R33J		
	390.0						R39〇	150	R39J		
	470.0						R47〇	→	R47J		

es 便	Inductance	Imax [mA]	Rdcmax [Ω]	Imax	[mA]	Rdcmax [Ω]	Imax [mA]	Rdcmax [Ω]	Imax [mA]	Rdcmax [Ω]	
七表值 Examples	1.5nH	H 430 0.13		300	850	0.1	300	0.1	300	0.1	
₹ÿ	10.0nH	220	0.51	300	340	0.31	300	0.26	300	0.3	
	100.0nH	60	3.74	150	200	1.5	300	1	300	0.9	

※形名の□、○にはインダクタンス許容差記号が入ります。±0.3nH(□)、±5%(○)以下の許容差も対応可能ですので、お問い合わせ下さい。 \square , \bigcirc mark indicates the Inductance tolerance code. The product with tolerance less than ± 0.3 nH (\square), $\pm 5\%$ (\bigcirc) is also available. Please contact your local sales office.

セレクションガイド Selection Guide

₹ P.14

アイテム一覧 PART NUMBERS

HK0603-

形名	EHS (Environmental	インダクタンス Inductance	Q	LQ測定周波数 Measuring frequency	国证		(Typic	al) ncy[Mi	Həl	自己共振 Self-res frequ	sonant	DC.Res	抵抗 sistance	定格電流 Rated	厚さ Thickness
Ordering code	Hazardous Substances)	(nH)	min.	[MHz]		300		800		[MI min.	Hz] Typ.	max.		current (mA) max.	(mm) (inch)
HK 0603 1N0	RoHS	1.0±0.3nH ※	4	100	6	12	17	22	27	10000	>13000	0.11	0.088	470	
HK 0603 1N2	RoHS	1.2±0.3nH ※	4	100	6	12	16	21	25	10000	>13000	0.12	0.089	450	
HK 0603 1N5	RoHS	1.5±0.3nH **	4	100	6	12	15	20	23	10000	>13000	0.13	0.11	430	
HK 0603 1N8□	RoHS	1.8±0.3nH ※	4	100	6	12	15	20	23	10000	>13000	0.16	0.12	390	
HK 0603 2N0	RoHS	2.0±0.3nH **	4	100	6	12	15	20	22	10000	>13000	0.17	0.13	380	
HK 0603 2N2	RoHS	2.2±0.3nH ※	4	100	6	12	15	20	22	8800	12500	0.19	0.14	360	
HK 0603 2N4□	RoHS	2.4±0.3nH *	4	100	6	12	15	20	22	8300	11700	0.20	0.15	350	
HK 0603 2N7	RoHS	2.7±0.3nH *	5	100	7	12	15	20	22	7700	11000	0.21	0.16	340	
HK 0603 3N0	RoHS	3.0±0.3nH %	5	100	7	12	15	20	22	7200	11000	0.22	0.18	330	
HK 0603 3N3	RoHS	3.3±0.3nH **	5	100	7	12	15	20	22	6700	9600	0.23	0.19	320	
HK 0603 3N6□	RoHS	3.6±0.3nH **	5	100	7	12	15	20	22		9100	0.25	0.20	310	
HK 0603 3N9□	RoHS	3.9±0.3nH **	5	100	7	12	15	20	22		8600	0.27	0.20	300	
HK 0603 4N3	RoHS	4.3±0.3nH *	5	100	7	12	15	19	21		8100	0.30	0.22	280	
HK 0603 4N7□	RoHS	4.7±0.3nH *	5	100	7	12	15	19	21	5300	7600	0.30	0.24	280	
HK 0603 5N1□	RoHS	5.1±0.3nH *	5	100	7	12	15	19	21		7100	0.33	0.26	270	0.30±0.03
HK 0603 5N6□	RoHS	5.6±0.3nH **	5	100	7	12	15	19	21		6600	0.36	0.27	260	(0.012±0.001)
HK 0603 6N2□	RoHS	6.2±0.3nH ※	5	100	7	11	14	18	20		6100	0.38	0.29	250	(0.012 ±0.001)
HK 0603 6N8O	RoHS	6.8±5% %	5	100	7	11	14	18	20	3900	5600	0.39	0.30	250	
HK 0603 7N5O	RoHS	7.5±5% **	5	100	7	11	14	18	19	3600	5300	0.41	0.34	240	
HK 0603 8N2O	RoHS	8.2±5% %	5	100	7	11	14	18	19	3400	4900	0.45	0.34	230	
HK 0603 9N1O	RoHS	9.1±5% *	5	100	7	11	14	17	18	3200	4600	0.48	0.40	220	
HK 0603 10NO	RoHS	10±5% ※	5	100	7	11	14	17	18	2900	4200	0.51	0.41	220	
HK 0603 12NO	RoHS	12±5% ※	5	100	7	11	14	17	18	2700	3800	0.68	0.45	190	
HK 0603 15NO	RoHS	15±5% ※	5	100	7	11	13	16	17	2300	3300	0.71	0.5	180	
HK 0603 18NO	RoHS	18±5% ※	5	100	7	11	13	16	17	2100	3000	0.81	0.57	170	
HK 0603 22NO	RoHS	22±5% **	5	100	7	11	13	15	16	1800	2600	1	0.71	150	
HK 0603 27NO	RoHS	27±5% **	4	100	6	10	12	14	15		2600	1.35	1.11	120	
HK 0603 33NO	RoHS	33±5% **	4	100	6	10	12	14	14	1700	2400	1.47	1.33	110	
HK 0603 39NO	RoHS	39±5% **	4	100	6	10	12	13	12		2100	1.72	1.51	100	
HK 0603 47NO	RoHS	47±5% *	4	100	6	10	11	12	11	1300	1800	1.90	1.74	100	
HK 0603 56NO	RoHS	56±5% *	4	100	6	10	11	11	10	1100	1600	2.27	1.85	80	İ
HK 0603 68NO	RoHS	68±5% *	4	100	6	10	11	11	10	1100	1500	2.66	2.30	80	
HK 0603 82NO	RoHS	82±5% *	4	100	6	10	11	10	8	1000	1400	3.37	2.60	70	
HK 0603 R10 O	RoHS	100±5% *	4	100	6	9	10	9	6	900	1200	3.74	3.00	60	

[※]形名の□、○にはインダクタンス許容差記号が入ります。±0.3nH (□)、±5% (○)以下の許容差も対応可能ですので、お問い合わせ下さい。□、○mark indicates the Inductance tolerance code. The product with tolerance less than ±0.3nH (□)、±5% (○) is also available. Please contact your local sales office.

HK1005-

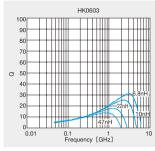
	EHS	インダクタンス		LQ測定周波数		0 /	Timin	(ام		自己共排		直流		定格		厚さ
形名	(Environmental) Q				sistance	Rated current [mA]		Thickness								
Ordering code	Hazardous	Inductance	min.	Measuring frequency	周波	拨数 Fr	equer	icy [M	Hz]	M		[[2]	ma		(mm)
3	Substances)	(nH)		[MHz]	100	300	500	800	1000			max.		-55~ +125℃	-55~ +85℃	(inch)
HK 1005 1N0□	RoHS	1.0±0.3nH ※	8	100	11	25	34	43	52	10000	>13000	0.08	0.04	300	900	
HK 1005 1N2	RoHS	1.2±0.3nH ※	8	100	11	25	35	44	52	10000	>13000	0.09	0.04	300	900	
HK 1005 1N5	RoHS	1.5±0.3nH ※	8	100	11	24	33	44	48		>13000		0.05	300	850	
HK 1005 1N8□	RoHS	1.8±0.3nH ※	8	100	11	23	30	36	42	6000	11000	0.12	0.06	300	700	
HK 1005 2N0□	RoHS	2.0±0.3nH ※	8	100	11	21	27	34	39	6000	10500	0.12	0.06	300	700	
HK 1005 2N2□	RoHS	2.2±0.3nH ※	8	100	10	18	25	31	36		10000		0.07	300	700	
HK 1005 2N4□	RoHS	2.4±0.3nH ※	8	100	10	18	24	31	35	6000	9500	0.13	0.07	300	650	
HK 1005 2N7□	RoHS	2.7±0.3nH ※	8	100	10	18	24	31	34	6000	9000	0.13	0.08	300	650	
HK 1005 3N0□	RoHS	3.0±0.3nH ※	8	100	10	18	24	31	35	6000	8500	0.16	0.09	300	600	
HK 1005 3N3	RoHS	3.3±0.3nH ※	8	100	10	18	24	31	35	6000		0.16	0.1	300	550	
HK 1005 3N6□	RoHS	3.6±0.3nH *	8	100	10	18	24	31	35	5000		0.2	0.11	300	500	
HK 1005 3N9□	RoHS	3.9±0.3nH ※	8	100	10	18	24	31	35	4000		0.21	0.12	300	500	
HK 1005 4N3□	RoHS	4.3±0.3nH ※	8	100	10	18	24	31	35	4000		0.2	0.12	300	500	
HK 1005 4N7	RoHS	4.7±0.3nH ※	8	100	10	18	24	31	34	4000			0.12	300	500	
HK 1005 5N1	RoHS	5.1±0.3nH ※	8	100	10	18	24	31	34	4000		0.21	0.13	300	450	
HK 1005 5N6	RoHS	5.6±0.3nH ※	8	100	10	18	24	30	35	4000			0.15	300	430	
HK 1005 6N2□	RoHS	6.2±0.3nH ※	8	100	10	18	24	30	34	3900		0.25	0.16	300	430	
HK 1005 6N8O	RoHS	6.8±5% ※	8	100	10	18	23	29	32	3900			0.17	300	430	0.50±0.05
HK 1005 7N5O	RoHS	7.5±5% ※	8	100	10	18	23	29	32	3700			0.18	300	400	
HK 1005 8N2O	RoHS	8.2±5% ※	8	100	10	18	23	29	31	3600			0.21	300	380	(0.020±0.002)
HK 1005 9N1O	RoHS	9.1±5% ※	8	100	10	18	23	29	31	3400		0.3	0.22	300	360	
HK 1005 10NO	RoHS	10±5% %	8	100	10	18	23	29	31	3200		0.31	0.23	300	340	
HK 1005 12NO	RoHS	12±5% ※	8	100	11	18	23	29	31	2700		0.4	0.28	300	330	
HK 1005 15NO	RoHS	15±5% ※	8	100	11	18	23	28	30	2300		0.46	0.31	300	320	
HK 1005 18NO	RoHS	18±5% %	8	100	11	18	23	28	30	2100		0.55	0.35	300	310	
HK 1005 22NO	RoHS	22±5% %	8	100	11	17	22	26	27	1900		0.6	0.42	300	300	
HK 1005 27NO	RoHS	27±5% %	8	100	11	17	21	25	26	1600		0.7	0.47	300	300	
HK 1005 33NO	RoHS	33±5% %	8	100	11	16	20	23	22	1300		0.8	0.5	200	250	
HK 1005 39N○	RoHS	39±5% ※	8	100	11	16	20	23	21	1200	1700	0.9	0.52	200	250	
HK 1005 47NO	RoHS	47±5% %	8	100	11	16	19	21	18	1000		1	0.58	200	230	
HK 1005 56NO	RoHS	56±5% %	8	100	11	16	18	18	16	750	1300	1	0.61	200	220	
HK 1005 68NO	RoHS	68±5% ※	8	100	11	15	17	18	11	750	1200	1.2	0.7	180	200	
HK 1005 82NO	RoHS	82±5% ※	8	100	10	14	16	15	6	600	1100	1.3	0.81	150	200	
HK 1005 R10O	RoHS	100±5% *	8	100	10	14	14	12	_	600	1000	1.5	0.94	150	200	1
HK 1005 R12O	RoHS	120±5% *	8	100	10	12	10	_	_	600	800	1.6	1.1	150	200	1
HK 1005 R15O	RoHS	150±5% *	8	100	12	17	17	_	_	550	920	3.2	2.57	140	200	1
HK 1005 R18O	RoHS	180±5% ※	8	100	12	16	-	_	_	500	810	3.7	2.97	130	200	1
HK 1005 R22	RoHS	220±5% **	8	100	12	16	_	_	_	450	700	4.2	3.29	120	200	1
HK 1005 R27	RoHS	270±5% *	8	100	12	14	_	_	_	400	600	4.8	3.92	110	200	1

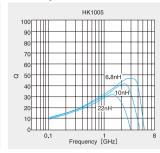
※形名の□、○にはインダクタンス許容差記号が入ります。±0.3nH (□)、±5% (○)以下の許容差も対応可能ですので、お問い合わせ下さい。□, ○mark indicates the Inductance tolerance code. The product with tolerance less than ±0.3nH (□), ±5% (○) is also available. Please contact your local sales office.

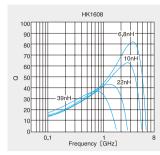
→ 当社カタログをご使用の際には「当社製品に関するお断り」を必ずお読みください。

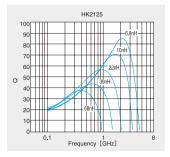
HK1608 —

形名	EHS (Environmental	インダクタンス Inductance	Q	LQ測定周波数 Measuring frequency	国河		(Typic		⊔-J	自己共排 Self-re frequ	sonant		抵抗 sistance	定格電流 Rated current	厚さ Thickness
Ordering code	Hazardous Substances)	(nH)	min.	[MHz]			· · ·	, -		[MI	Hz]	[]	Ω)	(mA)	(mm)
	,	` ′		[1411 12]	100		500	800	1000	min.	Тур.	max.	Тур.	max.	(inch)
HK 1608 1N0	RoHS	1.0±0.3nH ※	8	100	14	30	40	70	90		>13000	0.05	0.015	300	
HK 1608 1N2	RoHS	1.2±0.3nH ※	8	100	14	30	40	70	90		>13000	0.05	0.015	300	
HK 1608 1N5□	RoHS	1.5±0.3nH ※	8	100	14	26	34	47	50	6000	>13000	0.10	0.03	300	
HK 1608 1N8	RoHS	1.8±0.3nH ※	8	100	10	18	24	30	34	6000	>13000	0.10	0.06	300	
HK 1608 2N2□	RoHS	2.2±0.3nH ※	8	100	12	22	29	37	40	6000	12000	0.10	0.06	300	
HK 1608 2N7□	RoHS	2.7±0.3nH ※	10	100	13	24	32	41	45	6000	11000	0.10	0.06	300	
HK 1608 3N3□	RoHS	3.3±0.3nH ※	10	100	14	25	33	42	47	6000	9000	0.12	0.06	300	
HK 1608 3N9□	RoHS	3.9±0.3nH ※	10	100	13	25	33	42	46	6000	8000	0.14	0.07	300	
HK 1608 4N7□	RoHS	4.7±0.3nH ※	10	100	13	25	33	42	47	4000	6500	0.16	0.08	300	1
HK 1608 5N6□	RoHS	5.6±0.3nH ※	10	100	14	25	33	42	46	4000	5800	0.18	0.09	300	1
HK 1608 6N8O	RoHS	6.8±5% **	10	100	14	25	33	43	47	4000	5600	0.22	0.11	300	
HK 1608 8N2O	RoHS	8.2±5% ※	10	100	14	26	34	44	48	3500	5200	0.24	0.13	300	
HK 1608 10NO	RoHS	10±5% **	12	100	14	26	34	43	47	3400	4600	0.26	0.16	300	
HK 1608 12NO	RoHS	12±5% ※	12	100	14	27	35	45	49	2600	4000	0.28	0.17	300	
HK 1608 15NO	RoHS	15±5% ※	12	100	15	28	37	46	51	2300	3400	0.32	0.20	300	
HK 1608 18NO	RoHS	18±5% ※	12	100	15	27	36	44	48	2000	3000	0.35	0.21	300	
HK 1608 22NO	RoHS	22±5% **	12	100	16	28	36	44	47	1600	2900	0.40	0.25	300	0.8±0.15
HK 1608 27NO	RoHS	27±5% ※	12	100	16	29	37	45	46	1400	2200	0.45	0.28	300	(0.031±0.006)
HK 1608 33NO	RoHS	33±5% **	12	100	17	31	40	46	47	1200	1800	0.55	0.35	300	
HK 1608 39NO	RoHS	39±5% ※	12	100	18	31	39	44	44	1100	1600	0.60	0.38	300	
HK 1608 47NO	RoHS	47±5% %	12	100	17	28	34	35	34	900	1600	0.70	0.45	300	
HK 1608 56NO	RoHS	56±5% %	12	100	17	28	34	34	31	900	1400	0.75	0.50	300	
HK 1608 68NO	RoHS	68±5% ※	12	100	18	29	34	30	22	700	1200	0.85	0.55	300	
HK 1608 82NO	RoHS	82±5% ※	12	100	18	28	33	27	_	600	1100	0.95	0.60	300	
HK 1608 R100	RoHS	100±5% ※	12	100	18	27	28	16	_	600	1000	1.00	0.65	300	
HK 1608 R12O	RoHS	120±5% ※	8	50	16	24	23	_	_	500	800	1.20	0.68	300	
HK 1608 R15O	RoHS	150±5% ※	8	50	13	19	16	_	_	500	800	1.20	0.73	300	1
HK 1608 R18O	RoHS	180±5% ※	8	50	13	18	12		_	400	700	1.30	0.85	300	1
HK 1608 R22O	RoHS	220±5% *	8	50	12	16	_	_	_	400	600	1.50	0.95	300	1
HK 1608 R27O	RoHS	270±5% *	8	50	14	15	_	_	_	400	550	1.9	1.34	150	1
HK 1608 R33O	RoHS	330±5% **	8	50	14		_	_	_	350	480	2.1	1.53	150	1
HK 1608 R39O	RoHS	390±5% **	8	50	13	_	_	_	_	350	410	2.3	1.72	150	1
HK 1608 R470	RoHS	470±5% *	8	50	13	_		_	_	300	360	2.6	2.04	150	1

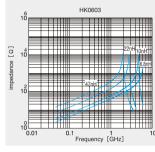

[※]形名の□、○にはインダクタンス許容差記号が入ります。±0.3nH (□)、±5% (○)以下の許容差も対応可能ですので、お問い合わせ下さい。 \square , \bigcirc mark indicates the Inductance tolerance code. The product with tolerance less than ± 0.3 nH (\square), $\pm 5\%$ (\bigcirc) is also available. Please contact your local sales office.

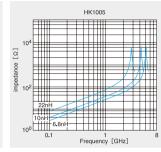

HK2125 -

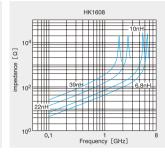

	EHS	インダクタンス		LQ測定周波数			Q			自己共技 Self-re	辰周波数 conant		抵抗	定格電流	厚さ
形名	(Environmental	Inductance	Q	Measuring frequency			Гуріса			Frequ	Jency		istance	Rated	Thickness
Ordering code	Hazardous	(nH)	min.	[MHz]				icy[M		[M		[]	_	current	(mm)
	Substances)	(וווו)		[IVII IZ]	100	300	500	800	1000	min.	Тур.	max.	Тур.	(mA)	(inch)
HK 2125 1N5S	RoHS	1.5±0.3nH	10	100	21	39	57	61	68	4000	>6000	0.10	0.02	300	
HK 2125 1N8S	RoHS	1.8±0.3nH	10	100	18	35	49	55	59	4000	>6000	0.10	0.02	300	
HK 2125 2N2S	RoHS	2.2±0.3nH	10	100	18	33	46	53	58	4000	>6000	0.10	0.03	300	
HK 2125 2N7S	RoHS	2.7±0.3nH	12	100	19	36	50	56	60	4000	>6000	0.10	0.03	300	
HK 2125 3N3S	RoHS	3.3±0.3nH	12	100	16	29	40	47	51	4000	>6000	0.13	0.04	300	
HK 2125 3N9S	RoHS	3.9±0.3nH	12	100	18	33	46	54	60	4000	>6000	0.15	0.05	300	
HK 2125 4N7S	RoHS	4.7±0.3nH	12	100	18	34	46	55	60	3500	>6000	0.20	0.05	300	
HK 2125 5N6S	RoHS	5.6±0.3nH	15	100	20	38	51	60	66	3200	5400	0.23	0.05	300	
HK 2125 6N8J	RoHS	6.8±5%	15	100	20	39	52	63	69	2800	4200	0.25	0.06	300	0.85±0.2
HK 2125 8N2J	RoHS	8.2±5%	15	100	21	40	54	63	70	2400	3700	0.28	0.07	300	(0.033±0.008)
HK 2125 10NJ	RoHS	10±5%	15	100	20	38	51	60	67	2100	3100	0.30	0.09	300	
HK 2125 12NJ	RoHS	12±5%	15	100	21	39	52	60	67	1900	3000	0.35	0.10	300	
HK 2125 15NJ	RoHS	15±5%	15	100	22	42	55	63	72	1600	2600	0.40	0.11	300	
HK 2125 18NJ	RoHS	18±5%	15	100	24	44	57	63	72	1500	2300	0.45	0.13	300	
HK 2125 22NJ	RoHS	22±5%	18	100	23	43	55	60	69	1400	2100	0.50	0.16	300	
HK 2125 27NJ	RoHS	27±5%	18	100	23	42	53	58	68	1300	1800	0.55	0.17	300	
HK 2125 33NJ	RoHS	33±5%	18	100	24	43	54	55	60	1200	1700	0.60	0.19	300	
HK 2125 39NJ	RoHS	39±5%	18	100	23	41	50	47	47	1000	1400	0.65	0.25	300	
HK 2125 47NJ	RoHS	47±5%	18	100	23	41	49	43	41	900	1200	0.70	0.26	300	
HK 2125 56NJ	RoHS	56±5%	18	100	23	42	48	39	38	800	1100	0.75	0.28	300	
HK 2125 68NJ	RoHS	68±5%	18	100	25	42	45	30	_	700	900	0.80	0.33	300	
HK 2125 82NJ	RoHS	82±5%	18	100	24	41	41	_	_	600	800	0.90	0.37	300	
HK 2125 R10J	RoHS	100±5%	18	100	23	37	37	_	_	600	800	0.90	0.40	300	1
HK 2125 R12J	RoHS	120±5%	13	50	22	33	29	_	_	500	700	0.95	0.43	300	$1.00^{+0.2}_{-0.3}$
HK 2125 R15J	RoHS	150±5%	13	50	22	34	26		_	500	700	1.00	0.46	300	1/0.008
HK 2125 R18J	RoHS	180±5%	13	50	23	34	20	_	_	400	600	1.10	0.50	300	0.039 -0.012
HK 2125 R22J	RoHS	220±5%	12	50	20	23	_	_	_	350	550	1.20	0.75	300	
HK 2125 R27J	RoHS	270±5%	12	50	20	19	_	_	_	300	480	1.30	0.85	300	1
HK 2125 R33J	RoHS	330±5%	12	50	22	15	_	_	_	250	400	1.40	0.90	300	1
HK 2125 R39J	RoHS	390±5%	10	50	17	12	_	_	_	250	400	1.30	0.85	300	1
HK 2125 R47J	RoHS	470±5%	10	50	17	_	_	_	_	200	350	1.50	0.95	300	1

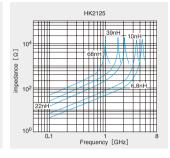

特性図 ELECTRICAL CHARACTERISTICS

Q-周波数特性例 Q-Characteristics (Measured by HP8719C)

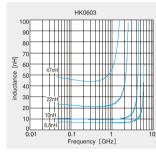


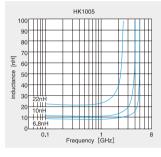


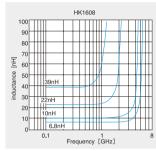


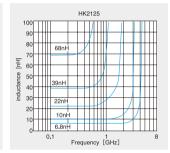


インピーダンス周波数特性例 Impedance-vs-Frequency characteristics (Measured by HP8719C)

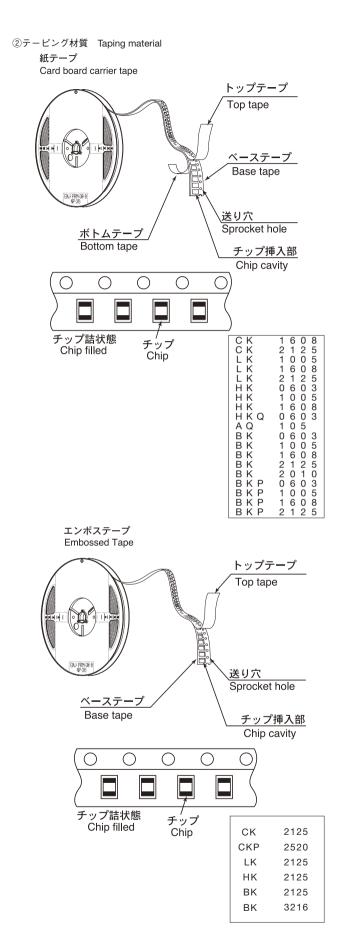


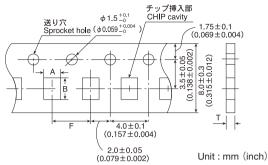




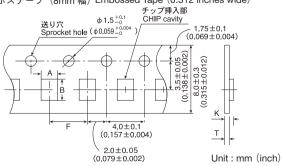


インダクタンス周波数特性例 Inductance-vs-Frequency characteristics (Measured by HP8719C)

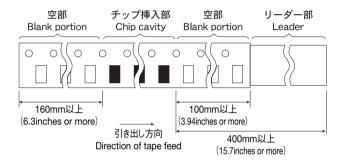



①最小受注単位数 Minimum Quantity ■テーピング梱包 Tape & Reel Packaging

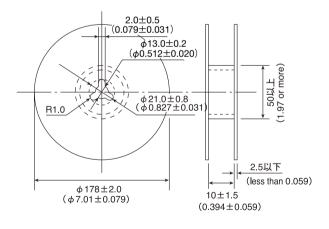
形式	製品厚み Thickness		坟量 [pcs] rd Quantity
Туре	[mm] (inch)	紙テープ Paper Tape	エンボステープ Embossed Tape
CK1608(0603)	0.8 (0.031)	4000	_
CK2125(0805)	0.85 (0.033)	4000	_
	1.25 (0.049) 0.9	_	2000
CKP2520 (1008)	(0.035)	_	3000
LK1005(0402)	(0.043) 0.5	10000	2000
LK1608 (0603)	0.020)	4000	_
	(0.031) 0.85	4000	_
LK2125 (0805)	(0.033) 1.25 (0.049)	_	2000
HK0603(0201)	0.3 (0.012)	15000	_
HK1005(0402)	0.5 (0.020)	10000	_
HK1608(0603)	0.8 (0.031)	4000	_
HK2125(0805)	0.85 (0.033)	_	4000
TIN2 123 (0003)	1.0 (0.039)	_	3000
HKQ0603S(0201)	0.3 (0.012)	15000	_
AQ105(0402)	0.5 (0.020)	10000	_
BK0603(0201)	0.3 (0.012)	15000	_
BK1005(0402)	0.5 (0.020)	10000	-
BK1608(0603)	0.8 (0.031)	4000	_
BK2125(0805)	0.85 (0.033)	4000	-
	1.25 (0.049)	_	2000
BK2010 (0804)	0.45 (0.018)	4000	-
BK3216 (1206)	0.8 (0.031)	_	4000
BKP0603 (0201)	0.3 (0.012)	15000	-
BKP1005(0402)	0.5 (0.020)	10000	-
BKP1608(0603)	0.8 (0.031)	4000	_
BKP2125 (0805)	0.85 (0.033)	4000	_


③テーピング寸法 Taping Dimensions

・紙テープ (8mm幅) Paper tape (0.315 inches wide)

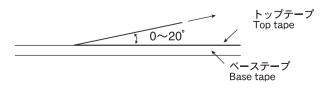

	製品厚み	チップ	挿入部	挿入ピッチ	テープ厚み
形式	Thickness		cavity	Insertion	Tape Thickness
Type	(mm)	Onp	Juvity	Pitch	Tupe Thiothicos
	(inch)	Α	В	F	T
CK1608 (0603)	0.8	1.0±0.2	1.8±0.2	4.0±0.1	1.1ma x
	(0.031)	(0.039 ± 0.008)	(0.071±0.008)	(0.157±0.004)	(0.043max)
CK2125 (0805)	0.85	1.5±0.2	2.3±0.2	4.0±0.1	1.1ma x
	(0.033)	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	(0.043max)
LK1005(0402)	0.5	0.65±0.1	1.15±0.1	2.0±0.05	0.8max
	(0.020)	(0.026±0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max)
LK1608(0603)	0.8	1.0±0.2	1.8±0.2	4.0±0.1	1.1ma x
	(0.031)	(0.039±0.008)	(0.071±0.008)	(0.157±0.004)	(0.043max)
LK2125(0805)	0.85	1.5±0.2	2.3±0.2	4.0±0.1	1.1ma x
	(0.033)	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	(0.043max)
HK0603(0201)	0.3	0.40±0.06	0.70 ± 0.06	2.0±0.05	0.45max
111(0003(0201)	(0.012)	(0.016±0.002)	(0.028±0.002)	(0.079±0.002)	(0.018max)
HK1005 (0402)	0.5	0.65±0.1	1.15±0.1	2.0±0.05	0.8max
111(1003(0402)	(0.020)	(0.026±0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max)
HK1608 (0603)	0.8	1.0±0.2	1.8±0.2	4.0±0.1	1.1ma x
111(1000(0003)	(0.031)	(0.039±0.008)	(0.071 ± 0.008)	(0.157±0.004)	(0.043max)
HKQ0603S(0201)	0.3	0.40±0.06	0.70 ± 0.06	2.0±0.05	0.45max
HNQ00033(0201)	(0.012)	(0.016±0.002)	(0.028 ± 0.002)	(0.079±0.002)	(0.018max)
AQ105(0402)	0.5	0.75±0.1	1.15±0.1	2.0±0.05	0.8max
AQ105(0402)	(0.020)	(0.030±0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max)
BK0603(0201)	0.3	0.40±0.06	0.70±0.06	2.0±0.05	0.45max
DKU003(0201)	(0.012)	(0.016±0.002)	(0.028 ± 0.002)	(0.079±0.002)	(0.018max)
BK1005(0402)	0.5	0.65±0.1	1.15±0.1	2.0±0.05	0.8max
DK1003(0402)	(0.020)	(0.026±0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max)
BK1608(0603)	0.8	1.0±0.2	1.8±0.2	4.0±0.1	1.1ma x
DK1000(0003)	(0.031)	(0.039±0.008)	(0.071 ± 0.008)	(0.157±0.004)	(0.043max)
BK2125(0805)	0.85	1.5±0.2	2.3±0.2	4.0±0.1	1.1ma x
BN2123(0003)	(0.033)	(0.059±0.008)	(0.091 ± 0.008)	(0.157±0.004)	(0.043max)
BK2010(0804)	0.45	1.2±0.1	2.17±0.1	4.0±0.1	0.8max
DN2010(0004)	(0.018)	(0.047±0.004)	(0.085±0.004)	(0.157±0.004)	(0.031max)
DI/D0000(0004)	0.3	0.40±0.06	0.70±0.06	2.0±0.05	0.45max
BKP0603 (0201)	(0.012)	(0.016±0.002)	(0.028 ± 0.002)	(0.079±0.002)	(0.018max)
DKD400E (0.400)	0.5	0.65±0.1	1.15±0.1	2.0±0.05	0.8max
BKP1005(0402)	(0.020)	(0.026±0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max)
DKD4600 (0000)	0.8	1.0±0.2	1.8±0.2	4.0±0.1	1.1ma x
BKP1608 (0603)	(0.031)	(0.039±0.008)	(0.071±0.008)	(0.157±0.004)	(0.043max)
DIVDO40E (000E)	0.85	1.5±0.2	2.3±0.2	4.0±0.1	1.1ma x
BKP2125 (0805)	(0.033)	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	(0.043max)

・エンボステープ(8mm 幅)Embossed Tape(0.312 inches wide)



形 式 Type	製品厚み Thickness 〔mm〕		挿入部 cavity	挿入ピッチ Insertion Pitch	テーフ Ta Thick	
	(inch)	Α	В	F	K	Т
CK2125 (0805)	1.25	1.5±0.2	2.3±0.2	4.0±0.1	2.0	0.3
	(0.049)	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	(0.079)	(0.012)
	0.9				1.4	
CKP2520(1008)	(0.035)	2.3±0.1	2.8±0.1	4.0±0.1	(0.055)	0.3
GRF2320(1000)	1.1	(0.091±0.004)	(0.110±0.004)	(0.157±0.004)	1.7	(0.012)
	(0.043)				(0.067)	
LK2125(0805)	1.25	1.5±0.2	2.3±0.2	4.0±0.1	2.0	0.3
LN2123(0003)	(0.049)	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	(0.079)	(0.012)
	0.85				1.5	
HK2125 (0805)	(0.033)	1.5±0.2	2.3±0.2	4.0±0.1	(0.059)	0.3
11K2123 (0003)	1.0	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	2.0	(0.012)
	(0.039)				(0.079)	
BK2125(0805)	1.25	1.5±0.2	2.3±0.2	4.0±0.1	2.0	0.3
DNZ 123 (U0U3)	(0.049)	(0.059±0.008)	(0.091±0.008)	(0.157±0.004)	(0.079)	(0.012)
BK3216(1206)	0.8	1.9±0.1	3.5±0.1	4.0±0.1	1.4	0.3
DN3210(1200)	(0.031)	(0.075±0.004)	(0.138±0.004)	(0.157±0.004)	(0.055)	(0.012)

④リーダー部・空部 LEADER AND BLANK PORTION



⑤リール寸法 Reel Size

⑥トップテープ強度 Top tape strength

トップテープの剥離力は、下図矢印方向にて0.1~0.7Nとなります。 The top tape requires a peel-off force of 0.1~0.7N in the direction of the arrow as illustrated below.

											Specif	ied Val	ue										
Item	BK0603	BK1005	BK1608	BK2125		RAY BK3216	BKP0603	BKP1005	BKP1608	BKP2125	CK1608	CK2125	CKP2520	LK1005	LK1608	LK2125	HK0603	HK1005	HK1608	HK2125	HKQ0603S	AQ105	Test Methods and Remarks
1. Operating Temperature Range			-55~-	-125°C				-55~	+85°C				-40~	+85°C			-55~	+125°C	-40~	+85°C	-55~	+125°C	
2. Storage Temperature Range			-55~-	⊦125°C				-55~	+85℃				-40~	+85°C			-55~	+125℃	-40~	+85°C	-55~	+125℃	
3. Rated Current	100~ 500mA DC	150~ 1000mA D C	150~ 1500mA D C	200~ 1200mA D C	100mA DC	100~ 200mA DC	1.0A DC	1.0A DC	1.0~ 3.0A DC	2.0~ 4.0A DC	50~ 60mA DC	60~ 500mA DC	1.1~ 1.4 DC	10~ 25mA DC	1~ 50mA DC	5~ 300mA DC	60~ 470mA DC	110~ 300mA DC	150~ 300mA DC	300mA DC	130~ 600mA DC	280~ 710mA DC	
4. Impedance	10~ 600Ω ±25%	10~ 1000Ω ±25%	22~ 2500Ω ±25%	15~ 2500Ω ±25%	5~ 600Ω ±25%	68~ 1000Ω ±25%	22~ 33Ω ±25%	120Ω ±25%	33~ 390Ω ±25%	33~ 220Ω ±25%													BK0603 Series: BKP0603 Series: Measuring frequency:100±1MHz Measuring equipment:HP4291A Measuring jig:16193A BK1005 Series: BKP1005 Series: Measuring frequency:100±1MHz Measuring equipment:HP4291A Measuring ig:16192A, 16193A
																							BK1608, 2125 Series: BKP1608, 2125 Series: Measuring frequency:100±1MHz Measuring equipment: HP4291A, HP4195A Measuring jig:16092A or 16192A (HW) BK2010, 3216 Series: Measuring frequency:100±1MHz Measuring equipment: HP4291A, HP4195A Measuring jig:16192A
5. Impedance											4.7~ 10.0μH :±20%	0.1~ 10.0μH :±20%	1.0~ 4.7μH :±20%		0.047~ 33.0μH :±20% 0.10~ 12.0μH :±10% 0 0.12~ 2.2μH :±30%	0.047~ 33.0μH :±20% 0.10~ 12.0μH :±10% 0 0.12~ 22.μH :±30%		1.0~ 6.2nH :±0.3nH 6.8~ 270nH :±5%	1.0∼ 5.6nH :±0.3nH 6.8∼ 470nH :±5%	1.0∼ 5.6nH :±0.3nH 6.8∼ 470nH :±5%	0.6~ 6.2nH :±0.3nH 6.8~ 22nH :±5%	1.0~ 6.2nH :±0.3nH 6.8~ 15nH :±5%	CK Series: Measuring frequency: 2 to 4MHz (CK1608) Measuring frequency: 2 to 25MHz (CK2125) Measuring frequency: 10 to 25MHz (CK2125) Measuring frequency: 10 to 25MHz (LK1005) Measuring frequency: 10 to 25MHz (LK1005) Measuring frequency: 10 to 50MHz (LK1008) Measuring frequency: 0.4 to 50MHz (LK1008) Measuring equipment, jig: HP4194 + 16085B + 16092A (or its equivalent) HP4195 + 41951 + 16092A (or its equivalent) HP4294 + 16192A HP4294 + 16192A HP4294 + 16192A (LK1005) HP4285A + 42841A + 42842C + 42851 - 61100 (CKP2520) Measuring current: ImA rms (0.047 to 4.7 µH) 0.1mA rms (5.6 to 33 µH) HK, AQ Series: Measuring frequency: 100MHz (HK0603 + HK1005 + AQ105) Measuring frequency: 50/100MHz (HK1608 + HK2125) Measuring requipment, jig: Measuring requipment, jig: HP4291A + 16197A (HK00603 - AQ105) HP4291A + 16197A (HK00603S) HP4291A 16197A (HK00603S)

^{*} Definition of rated current: In the CK and BK Series, the rated current is the value of current at which the temperature of the element is increased within 20°C.

In the BK Series P type and CK Series P type, the rated current is the value of current at which the temperature of the element is increased within 40°C. In the LK,HK,HKQ,and AQ Series, the rated current is either the DC value at which the internal L value is decreased within 5% with the application of DC bias, or the value of current at which the temperature of the element is increased within 20°C.

											Specifi	ied Valu	ıe										
Item	BK0603	BK1005	BK1608	BK2125		RAY BK3216	BKP0603	BKP1005	BKP1608	BKP2125	CK1608	CK2125	CKP2520	LK1005	LK1608	LK2125	HK0603	HK1005	HK1608	HK2125	HKQ0603S	AQ105	Test Methods and Remarks
6. Q					BK2010	BK3216					20 min.	15~20 min.		10~20 min.	10~35 min.	15~50 min.	4~5 min.	8 min.	8~12 min.	10~18 min.	10~13 min.	8 min.	CK Series: Measuring frequency: 2 to 4MHz (CK1608) Measuring frequency: 2 to 25MHz (CK2125) LK Series: Measuring frequency: 10 to 25MHz (LK1005) Measuring frequency: 10 to 25MHz (LK1005) Measuring frequency: 1 to 50MHz (LK1008) Measuring equipment, jig: HP4194+ 16085B + 16092A (or its equivalent) +HP4195A+41951+16092A (or its equivalent) +HP4195A+416193A (LK1005) Measuring current: -1mArms (0.047 to 4.7µH) +0.1mArms (5.6 to 33µH) HK, HKQ, AQ Series: Measuring frequency: 100MHz (HK0603-HK105) Measuring frequency: 100MHz (HK0603-HK1005-AQ105) Measuring frequency: 100MHz (HK0603-HK1005-AQ105) Measuring frequency: 100MHz (HK0603-HK1205) Measuring frequency: 100MHz (HK0603-HK1205)
7. DC Resistance	0.07~ 1.50Ω max.	0.05~ 0.80Ω max.	0.05~ 1.10Ω max.	0.05~ 0.75Ω max.	0.10~ 0.90Ω max.	0.15~ 0.80Ω max.	0.065~ 0.070Ω max.	0.140Ω max.	$\begin{array}{c} 0.025 \sim \\ 0.140 \Omega \\ \text{max.} \end{array}$	0.020~ 0.050Ω max.	0.45~ 0.85Ω (±30%)	0.16~ 0.65Ω max.	0.08~ 0.15 max.	0.7~ 1.70Ω max.	0.2~ 2.2Ω max.	0.1~ 1.1Ω max.	$0.11\sim$ 3.74Ω max.	$0.08\sim$ 4.8Ω max.	$0.05\sim$ 2.6Ω max.	0.10~ 1.5Ω max.		0.07~ 0.45Ω max.	Measuring frequency: 500MHz (HKQ0603S) Measuring equipment, jig:
8. Self Resonance Frequency(SRF)					_	_					17~ 25MHz min.	24~ 235MHz min.		40~ 180MHz min.	9~ 260MHz min.	13~ 320MHz min.	900~ 10000MHz min.	400~ 10000MHz min.	300~ 10000MHz min.	200~ 4000MHz min.	1900~ 10000MHz min.	2300~ 10000MHz min.	LK Series: Measuring equipment: HP4195A Measuring jig: 41951+16092A (or its equivalent) HK, HKQ, AQ Series: Measuring equipment: HP8719C HP8753D (HK2125)
Temperature Characteristic					_	_							_					tance c ±10%	hange	:			HK, HKQ, AQ Series: Temperature range: -30 to +85°C Reference temperature: +20°C
10. Resistance to Flexure of Substrate	No me	echanic	al dam	age.																			Warp: 2mm Testing board: glass epoxy-resin substrate Thickness: 0.8mm Board R-230 Warp JDEvistion: 1 45 45 [Unit: mm]

										Specifi	ed Valı	ıe										
Item	BK0603	BK1005	BK1608	BK2125	ARRAY BK2010 BK32		BKP1005	BKP1608	BKP2125	CK1608	CK2125	CKP2520	LK1005	LK1608	LK2125	HK0603	HK1005	HK1608	HK2125	HKQ0603S	AQ105	Test Methods and Remarks
11. Solderability	At leas	st 75% (of term	inal ele	ctrode is c	overed b	y new s	older.		At leas	t 75%	of term	nal ele	ctrode i	s cove	red by r	new sol	der.				Solder temperature : 230±5°C
																						Duration: 4±1 sec.
12. Resistance to	Appea	rance	: No si	gnificar	it abnorma	lity.				No mecl	nanical c	lamage.	No	No mech	nanical	No me	chanic	al dam	age.			Solder temperature : 260±5°C
Soldering	Imped	ance cl	nange	: With	in ±30%					Remaini	ng termi	nal	mechanical	damage	е.	Remair	ning tern	ninal ele	ctrode	: 70%	min.	Duration: 10±0.5 sec.
										electrod	e: 709	6 min.	damage.	Remain	ing							Preheating temperature: 150 to 180°C
													Remaining	termina	ıl	Induct	ance cl	nange				Preheating time: 3 min.
										Inductar	nce chan	ige	terminal	electro	de :	Within	±5%					Flux: Immersion into methanol solution with
										R10~4R	7: Withir	±10%	electrode	70% m	iin.							colophony for 3 to 5 sec.
										6R8~10	: Within	±15%	: 70% min.	Inducta	ınce							Recovery: 2 to 3 hrs of recovery under
										CKP252	0:Withir	±30%	Inductance	change								the standard condition after the test.
													change	47N~4	R7:							(See Note 1)
													Within	Within∃	±10%							
													±15%	5R6~3	30:							
														Within∃	±15%							
13. Thermal Shock	Appea	rance	: No si	gnificar	it abnorma	lity.				No		No	No me	chanica	al	No me	chanic	al dam	age.			Conditions for 1 cycle
	Imped	ance cl	nange	: With	in ±30%					mecha	inical	mechanical	damag	je.		Induct	ance cl	nange	: With	in ±10)%	Step 1: Minimum operating temperature
										damag	je.	damage.	Induct	ance		Qchan	nge : V	Vithin :	£20%			+0 -3 ℃ 30±3 min.
										Induct	ance	Induc-	chang	e :								Step 2 : Room temperature 2 to 3 min.
										change		tance	Withir	±10%								Step 3 : Maximum operating temperature
										Within ±		change:	Qchan	ge :								+0 -3 °C 30±3 min.
										Qchan	ge :	Within	Withir	±30%								Step 4: Room temperature 2 to 3 min.
										Within ±	30%	±30%										Number of cycles: 5
																						Recovery: 2 to 3 hrs of recovery under the
																						standard condition after the test. (See Note 1)

(Note 1) When there are questions concerning mesurement result; measurement shall be made after 48 ± 2 hrs of recovery under the standard condition.

										Specified Valu	ıe										
Item					ARF	DAV	Т			·											Test Methods and Remarks
item	BK0603 E	BK1005	BK16	608 BK2125		BKP060	BKP1005	BKP1608	BKP2125	CK1608 CK2125	CKP2520	LK1005	LK1608	LK2125	HK0603	HK1005	HK1608	HK2125	HKQ0603S	AQ105	rest wethous and nemarks
14 Down Host	Annoore		· No	significant	BK2010					No	Ma	No me	oboni	No	No mos	hania	l dome				BBK Series:
 Damp Heat (Steady state) 				signilicani je:Within:		-				No mechanical	No mechanical	cal dar		No mechanical	No med Inducta				+10%		Temperature: 40±2°C
	Impedai	nice cn	ang	.e · within .	±30 %					damage.	damage.	Cardar	nage.	damage.	Q chan				± 10 %		Humidity: 90 to 95%RH
										damage.	oanago.	Inducta	ance	uumagu.	Q CHan	90.441		2070			Duration: 500 +24 hrs
										Inductance	Inductance	change		Inductance							Recovery: 2 to 3 hrs of recovery under the
										change:	change :	Within		change:							standard condition after the removal from test
										Within ±20%	Within	±10%		Within							chamber. (See Note 1)
											±30%	1		±20%							LK, CK, CKP, HK, HKQ, AQ Series:
										Q change:		Q char	nge:	Q change:							Temperature: 40±2°C (LK, CK, CKPSeries)
										Within ±30%		Within		Within							: 60±2°C (HK, HKQ, AQ Series)
												±30%	,	±30%							Humidity: 90 to 95%RH
												1									Duration: 500±12 hrs
												1									Recovery: 2 to 3 hrs of recovery under the
												1									standard condition after the removal from test
																					chamber. (See Note 1)
15. Loading under Damp Heat	Appeara	ance :	No	significant	t abno	rmality.				No	No	No	No	No	No med	chanica	ıl dama	age.			BK Series:
Damp neat	Impedar	nce ch	ang	ge: Within:	±30%					mechanical	mechanical	mechanical	mechanical	mechanical	Inducta	ınce ch	ange:	Within	±10%		Temperature: 40±2°C
										damage.	damage.	damage.	damage.	damage.	Q chan	ge : Wi	thin ±2	20%			Humidity: 90 to 95%RH
																					Duration: 500 +24 hrs
										Inductance	Induc-	Induc-	Induc-	Induc-							Recovery: 2 to 3 hrs of recovery under the
										change:	tance	tance	tance	tance							standard condition after the removal from test
										Within ±20%	change:	change:	change:	change:							chamber. (See Note 1)
											Within	Within	0.047 to	Within							LK, CK, CKP, HK, HKQ, AQ Series:
										Q change: Within ±30%	±30%	±10%	12.0 µH:	±20%							Temperature: 40±2°C (LK, CK, CKPSeries)
										Within ±30%		Q	Within ±10%	Q							:60±2°C (HK, HKQ, AQ Series)
												change:		change:							Humidity: 90 to 95%RH
												Within	33.0 μH:	Within							Duration: 500±12 hrs
												±30%	Within	±30%							Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test
												-0070	±15%								chamber. (See Note 1)
													10%								chamber. (See Note 1)
													Q								
													change:								
	I										l .		i unanye.								
													Within								
16. Loading at High	Appeara	ance :	No:	significant	t abno	rmality.				No	No	No	Within ±30%	No	No med	chanica	ıl dama	age.			BK Series:
16. Loading at High Temperature				significant						No mechanical	No mechanical	No mechanical	Within ±30%	No mechanical	No med			-	±10%		Temperature: 125±3°C
													Within ±30% No			ınce ch	ange:	Within	±10%		
										mechanical damage.	mechanical damage.	mechanical damage.	Within ±30% No mechanical damage.	mechanical	Inducta	ınce ch	ange:	Within	±10%		Temperature: 125±3°C Applied current: Rated current
										mechanical damage. Inductance	mechanical damage.	mechanical damage.	Within ±30% No mechanical damage.	mechanical damage.	Inducta	ınce ch	ange:	Within	±10%		Temperature: 125±3°C
										mechanical damage. Inductance change:	mechanical damage. Induc- tance	mechanical damage. Induc- tance	Within ±30% No mechanical damage. Inductance	mechanical damage. Induc- tance	Inducta	ınce ch	ange:	Within	±10%		Temperature:125±3°C Applied current:Rated current Duration:500+24 hrs
										mechanical damage. Inductance	mechanical damage. Induc- tance change:	mechanical damage. Induc- tance change:	Within ±30% No mechanical damage. Inductance change:	mechanical damage. Induc- tance change:	Inducta	ınce ch	ange:	Within	±10%		Temperature: 125 ± 3 °C Applied current: Rated current Duration: 500^{+24}_{-0} hrs Recovery: 2 to 3 hrs of recovery under the
										mechanical damage. Inductance change: Within ±20%	mechanical damage. Induc- tance change:	mechanical damage. Induc- tance change:	Within ±30% No mechanical damage. Inductance change: 0.047 to	mechanical damage. Induc- tance change:	Inducta	ınce ch	ange:	Within	±10%		Temperature: 125 \pm 3°C Applied current: Rated current Duration: 500 $^{+24}_{-0}$ hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from tes
										mechanical damage. Inductance change: Within ±20% Q change:	mechanical damage. Induc- tance change:	mechanical damage. Inductance change: Within ±10%	Within ±30% No mechanical damage. Inductance change: 0.047 to 12.0 µH:	mechanical damage. Induc- tance change:	Inducta	ınce ch	ange:	Within	±10%		Temperature: 125±3°C Applied current: Rated current Duration: 500 +24 hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note 1) LK, CK, CKP, HK, HKQ, AQ Series, BK Serie P type:
										mechanical damage. Inductance change: Within ±20%	mechanical damage. Inductance change: Within ±30%	mechanical damage. Inductance change: Within ±10%	Within ±30% No mechanical damage. Inductance change: 0.047 to 12.0 µH: Within	mechanical damage. Inductance change: Within ±20%	Inducta	ınce ch	ange:	Within	±10%		Temperature: 125±3°C Applied current: Rated current Duration: 500 + 24 hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note 1) LK, CK, CKP, HK, HKQ, AQ Series, BK Serie P type: Temperature: 85±2°C (LK, CK, CKPSeries)
										mechanical damage. Inductance change: Within ±20% Q change:	mechanical damage. Inductance change: Within ±30%	mechanical damage. Inductance change: Within ±10%	Within ±30% No mechanical damage. Inductance change: 0.047 to 12.0 µH: Within ±10%	mechanical damage. Inductance change: Within ±20%	Inducta	ınce ch	ange:	Within	±10%		Temperature: 125±3°C Applied current: Rated current Duration: 500 + 24 / hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber, (See Note 1) LK, CK, CKP, HK, HKQ, AQ Series, BK Serie P type: Temperature: 85±2°C (LK, CK, CKPSeries) : 85±3°C (BK Series P type)
										mechanical damage. Inductance change: Within ±20% Q change:	mechanical damage. Inductance change: Within ±30%	mechanical damage. Inductance change: Within ±10% Q change:	Within ±30% No mechanical damage. Inductance change: 0.047 to 12.0 µH: Within ±10% 15.0 to	mechanical damage. Inductance change: Within ±20% Q change:	Inducta	ınce ch	ange:	Within	±10%		Temperature: 125±3°C Applied current: Rated current Duration: 500 +24 / hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber, (See Note 1) LK, CK, CKP, HK, HKQ, AQ Series, BK Serie P type: Temperature: 85±2°C (LK, CK, CKPSeries): 85±3°C (BK Series P type): 85±2°C (HK1608, 2125)
										mechanical damage. Inductance change: Within ±20% Q change:	mechanical damage. Inductance change: Within ±30%	mechanical damage. Inductance change: Within ±10% Q change: Within	Within ±30% No mechanical damage. Inductance change: 0.047 to 12.0 µH: Within ±10% 15.0 to 33.0 µH:	mechanical damage. Inductance change: Within ±20% Q change: Within	Inducta	ınce ch	ange:	Within	±10%		Temperature: 125±3°C Applied current: Rated current Duration: 500 +24 / nrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note 1) LK, CK, CKP, HK, HKQ, AQ Series, BK Serie P type: Temperature: 85±2°C (LK, CK, CKPSeries): 85±3°C (BK Series P type): 85±2°C (HK1608, 2125): 85±2°C (HK1005, AQ105 operating)
										mechanical damage. Inductance change: Within ±20% Q change:	mechanical damage. Inductance change: Within ±30%	mechanical damage. Inductance change: Within ±10% Q change: Within	Within $\pm 30\%$ No mechanical damage. Inductance change: 0.047 to $12.0\mu\text{H}$: Within $\pm 10\%$ 15.0 to $33.0\mu\text{H}$: Within	mechanical damage. Inductance change: Within ±20% Q change:	Inducta	ınce ch	ange:	Within	±10%		Temperature: 125±3°C Applied current: Rated current Duration: 500 +24 / nrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note 1) LK, CK, CKP, HK, HKQ, AQ Series, BK Serie P type: Temperature: 85±2°C (LK, CK, CKPSeries): 85±3°C (BK Series P type): 85±2°C (HK1608, 2125): 85±2°C (HK1005, AQ105 operating temperature range -55 to +85°C)
										mechanical damage. Inductance change: Within ±20% Q change:	mechanical damage. Inductance change: Within ±30%	mechanical damage. Inductance change: Within ±10% Q change: Within	Within ±30% No mechanical damage. Inductance change: 0.047 to 12.0 µH: Within ±10% 15.0 to 33.0 µH:	mechanical damage. Inductance change: Within ±20% Q change: Within	Inducta	ınce ch	ange:	Within	±10%		Temperature: 125±3°C Applied current: Rated current Duration: 500 +24 hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note 1) LK, CK, CKP, HK, HKQ, AQ Series, BK Serie P type: Temperature: 85±2°C (LK, CK, CKPSeries): 85±3°C (BK Series P type): 85±2°C (HK1005, AQ105 operating temperature range -55 to +85°C): 125±2°C (HK0603, HK1005, HKQ0603S,
										mechanical damage. Inductance change: Within ±20% Q change:	mechanical damage. Inductance change: Within ±30%	mechanical damage. Inductance change: Within ±10% Q change: Within ±30%	Within $\pm 30\%$ No mechanical damage. Inductance change: 0.047 to $12.0\mu\text{H}$: Within $\pm 10\%$ 15.0 to $33.0\mu\text{H}$: Within	mechanical damage. Inductance change: Within ±20% Q change: Within	Inducta	ınce ch	ange:	Within	±10%		Temperature: 125±3°C Applied current: Rated current Duration: 500 +24 hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note 1) LK, CK, CKP, HK, HKQ, AQ Series, BK Serie P type: Temperature: 85±2°C (LK, CK, CKPSeries) :85±3°C (BK Series P type) :85±2°C (HK1005, AQ105 operating temperature range -55 to +85°C) :125±2°C (HK0603, HK1005, HKQ0603S, AQ105 operating temperature range -55 to +85°C)
										mechanical damage. Inductance change: Within ±20% Q change:	mechanical damage. Inductance change: Within ±30%	mechanical damage. Inductance change: Within ±10% Q change: Within ±30%	Within ±30% No mechanical damage. Inductance change: 0.047 to 12.0 µH: Within ±10% 15.0 to 1.0 Within ±15% Q	mechanical damage. Inductance change: Within ±20% Q change: Within	Inducta	ınce ch	ange:	Within	±10%		Temperature: 125±3°C Applied current: Rated current Duration: 500 +24 hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note 1) LK, CK, CKP, HK, HKQ, AQ Series, BK Serie P type: Temperature: 85±2°C (LK, CK, CKPSeries): 85±3°C (BK Series P type): 85±2°C (HK1005, AQ105 operating temperature range: 55 to +485°C): 125±2°C (HK0603, HK1005, HKQ0603S, AQ105 operating temperature range: 55 to +125°C) Applied current: Rated current
										mechanical damage. Inductance change: Within ±20% Q change:	mechanical damage. Inductance change: Within ±30%	mechanical damage. Inductance change: Within ±10% Q change: Within ±30%	Within $\pm 30\%$ No mechanical damage. Inductance change: 0.047 to $12.0\mu\text{H}$: Within $\pm 10\%$ 15.0 to $33.0\mu\text{H}$: Within $\pm 15\%$	mechanical damage. Inductance change: Within ±20% Q change: Within	Inducta	ınce ch	ange:	Within	±10%		Temperature: 125±3°C Applied current: Rated current Duration: 500 +24 hrs Recovery: 2 to 3 hrs of recovery under the standard condition after the removal from test chamber. (See Note 1) LK, CK, CKP, HK, HKQ, AQ Series, BK Serie P type: Temperature: 85±2°C (LK, CK, CKPSeries) :85±3°C (BK Series P type) :85±2°C (HK1005, AQ105 operating temperature range -55 to +85°C) :125±2°C (HK0603, HK1005, HKQ0603S, AQ105 operating temperature range -55 to +85°C)

Note on standard condition: "standard condition" referred to herein is defined as follows:

5 to 35°C of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure.

When there are questions concerning measurement results:

In order to provide correlation data, the test shall be conducted under condition of $20\pm2^{\circ}C$ of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure. Unless otherwise specified, all the tests are conducted under the "standard condition."

(Note 1)

measurement shall be made after 48 \pm 2 hrs of recovery under the standard condition.

Stages	Precautions	Technical considerations
. Circuit Design	 ◆Verification of operating environment, electrical rating and performance 1. A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications. As such, any inductors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications. ◆Operating Current (Verification of Rated current) 1. The operating current for inductors must always be lower than their rated values. 2. Do not apply current in excess of the rated value because the inductance may be reduced due to the magnetic saturation effect. 	
2. PCB Design	 ◆Pattern configurations (Design of Land-patterns) When inductors are mounted on a PCB, the size of land patterns and the amount of solder used (size of fillet) can directly affect inductor performance. Therefore, the following items must be carefully considered in the design of solder land patterns: (1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropriate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets. (2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's soldering point is separated by solder-resist. (3) The larger size of land patterns and amount of solder, the smaller Q value after mounting on PCB. It makes higher the Q value to design land patterns 	1. The following diagrams and tables show some examples of recommended patterns to prevent excessive solder amounts (larger fillets which extend above the component end terminations). Examples of improper pattern designs are also shown. (1) Recommended land dimensions for a typical chip inductor land patterns for PCBs Land pattern Chip inductor Solder-resist Chip inductor Chip inductor Type 1608 2125 3216 2.0 3.2 W 0.8 1.25 1.6 A 0.8~1.0 1.0~1.4 1.8~2.5 B 0.5~0.8 0.8~1.5 0.8~1.7 C 0.6~0.8 0.9~1.2 1.2~1.6
	smaller than terminal electrode of chips.	Recommended land dimensions for reflow-soldering (unit: mm)
		Type 0603 1005 105 1608 2125 3216 2520
		L 0.6 1.0 1.0 1.6 2.0 3.2 2.5 W 0.3 0.5 0.6 0.8 1.25 1.6 2.0
		A 0.20~0.30 0.45~0.55 0.50~0.55 0.6~0.8 0.8~1.2 1.8~2.5 1.0~1
		B 0.20~0.30 0.40~0.50 0.30~0.40 0.6~0.8 0.8~1.2 0.6~1.5 0.6~1
		C 0.25~0.40 0.45~0.55 0.60~0.70 0.6~0.8 0.9~1.6 1.2~2.0 1.8~2
		Excess solder can affect the ability of chips to withstand mechanical stresses. Therefore, please take proper precautions when designing land-patterns. C
		3216 2010
		$\frac{\omega}{\tilde{k}}$ L 3.2 2.0
	The state of the s	↑ ⁰ W 1.6 1.0

		3216	2010
Size	L	3.2	2.0
ze	W	1.6	1.0
a	a	0.7~0.9	0.5~0.6
b)	0.8~1.0	0.5~0.6
c	;	0.4~0.5	0.2~0.3
c	t	0.8	0.5

Stages	Precautions		Technical consi	iderations
2.PCB Design		(2) Example	es of good and bad solder	application
			Not recommended	Recommended
		Mixed mount- ing of SMD and leaded compo- nents	Lead wire of component	Solder-resist
		C o m p o n e n t placement close to the chassis	Chassis Solder(for grounding)	Solder-resist
		Hand-soldering of leaded components near mounted components	Lead wire of component- Soldering iron	Solder-resist So
		Horizontal com- ponent place- ment		Solder-resist
	◆Pattern configurations (Inductor layout on panelized [breakaway] PC boards) 1. After inductors have been mounted on the boards	tors should		and bad inductor layout; SMD induc- ny possible mechanical stresses from
	chips can be subjected to mechanical stresses in sub-	Item	Not recommended	Recommended
	sequent manufacturing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered boards etc.) For this reason, planning pattern configurations and the position of SMD inductors should be carefully	Deflection of the board		Position the component at a right angle to the direction of the mechanical stresses that are anticipated.
	performed to minimize stress.	that the am	nount of mechanical stress	kaway PC board, it should be noted ses given will vary depending on in- build be counted for better design.
		Perfora	tion	
			Slit	B ss A>B = C>D>E
		chanical stre The following stressful: pu	ess on the inductors can	eir perforations, the amount of me- vary according to the method used. order from least stressful to most g, and perforation. Thus, any ideal

SMD inductor layout must also consider the PCB splitting procedure.

Stages	Precautions	Technical considerations		
3.Considerations for automatic placement	 ◆Adjustment of mounting machine 1. Excessive impact load should not be imposed on the inductors when mounting onto the PC boards. 2. The maintenance and inspection of the mounter should be conducted periodically. 	1. If the lower limit of the pick-up nozzle is low, too much force may be imposed on the inductors, causing damage. To avoid this, the following points should be considered before lowering the pick-up nozzle: (1) The lower limit of the pick-up nozzle should be adjusted to the surface level of the PC board after correcting for deflection of the board. (2) The pick-up pressure should be adjusted between 1 and 3 N static loads. (3) To reduce the amount of deflection of the board caused by impact of the pick-up nozzle, supporting pins or back-up pins should be used under the PC board. The following diagrams show some typical examples of good pick-up nozzle placement:		
			Improper method	Proper method
		Single-sided mounting	chipping or cracking	supporting pins or back-up pins
		Double-sided mounting	chipping or cracking	supporting pins- or back-up pins
		cause chipping pact on the ir the alignmen	ng or cracking of the induct	ment of the nozzle height can tors because of mechanical im- monitoring of the width between n, and maintenance, inspection iducted periodically.
	◆Selection of Adhesives 1. Mounting inductors with adhesives in preliminary assembly, before the soldering stage, may lead to degraded inductor characteristics unless the following factors are appropriately checked; the size of land patterns, type of adhesive, amount			
	applied, hardening temperature and hardening period. Therefore, it is imperative to consult the manufacturer of the adhesives on proper usage and amounts of adhesive to use.	a. The adhesive the mountin b. The adhesive c. The adhesive d. The adhesive e. The adhesive f. The adhesive g. The adhesive	g & solder process. should have sufficient stren should have good coating a should be used during its p should harden rapidly must not be contaminated. should have excellent insula	nd thickness consistency. rescribed shelf life.

⚠当社カタログをご使用の際には「当社製品に関するお断り」を必ずお読みください。

Stages	Precaution	Technical considerations	
3.Considerations for automatic placement		When using adhesives to mount inductors on a PCB, inappropriate amounts of adhesive on the board may adversely affect component placement. Too little adhesive may cause the inductors to fall off the board during the solder process. Too much adhesive may cause defective soldering due excessive flow of adhesive on to the land or solder pad. [Recommended conditions]	
		Figure 0805 case sizes as examples	
		a 0.3mm min	
		b 100 ~120 μm	
		c Area with no adhesive	
		Amount of adhesives After inductors are bonded	
4.Soldering	◆Selection of Flux 1. Since flux may have a significant effect on the performance of inductors, it is necessary to verify the following conditions prior to use; (1) Flux used should be with less than or equal to 0.1 wt% (Chlorine conversion method) of halogenated content. Flux having a strong acidity content should not be applied. (2) When soldering inductors on the board, the amount of flux applied should be controlled at the optimum level. (3) When using water-soluble flux, special care should be taken to properly clean the boards.	 1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate the flux, or highly acidic flux is used, an excessive amount of residue after soldering may lead to corrosion of the terminal electrodes or degradation of insulation resistance on the surface of the Inductor. 1-2. Flux is used to increase solderability in flow soldering, but if too much is applied, a large amount of flux gas may be emitted and may detrimentally affect solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system. 1-3. Since the residue of water-soluble flux is easily dissolved by water content in the air, the residue on the surface of Inductor in high humidity conditions may cause a degradation of insulation resistance and therefore affect the reliability of the components. The cleaning methods and the capability of the machines used should also be considered carefully when selecting water-soluble flux. 	
	◆Soldering Temperature, time, amount of solder, etc. are specified in accordance with the following recommended conditions.	1-1. Preheating when soldering Heating: Chip inductor components should be preheated to within 100 to 130°C of the soldering. Cooling: The temperature difference between the components and cleaning process should not be greater than 100 °C. Chip inductors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. Therefore, the soldering process must be conducted with a great care so as to prevent malfunction of the components due to excessive thermal shock.	

Stages	Precautions	Technical considerations	
4.Soldering	◆And please contact us about peak temperature when you use lead-free paste.	Recommended conditions for soldering [Reflow soldering] Temperature profile Temperature (C) (Pb free soldering) (Gradually) (Gradually) (Gradual cooling) (Freheating) (Gradually) (Freheating) (Fr	
		2. Because excessive dwell times can detrimentally affect solderability, soldering duration should be kept as close to recommended times as possible.	
		[Wave soldering] Temperature profile Temperature (°C) (Pb free soldering) Temperature (°C) 300 Peak 260°C max	
		Caution 1. Make sure the inductors are preheated sufficiently. 2. The temperature difference between the inductor and melted solder should not be greater than 100 to 130°C 3. Cooling after soldering should be as gradual as possible. 4. Wave soldering must not be applied to the inductors designated as for reflow soldering only.	
		[Hand soldering] Temperature profile Temperature (°C) (Pb free soldering) 400 Temperature (°C) (Pb free soldering) 300 300 400 400 400 400 400 40	
		**The soldering iron should not directly touch the components. **Assured to be soldering iron for 1 time. Note: The above profiles are the maximum allowable soldering condition, therefore these profiles are not always recommended. Caution 1. Use a 20W soldering iron with a maximum tip diameter of 1.0 mm. 2. The soldering iron should not directly touch the inductor.	
5.Cleaning	◆Cleaning conditions 1. When cleaning the PC board after the Inductors are all mounted, select the appropriate cleaning solution according to the type of flux used and purpose of the cleaning (e.g. to remove soldering flux or other materials from the production process.)	The use of inappropriate solutions can cause foreign substances such as flux residue to adhere to the inductor, resulting in a degradation of the inductor's electrical properties (especially insulation resistance).	

Stages	Precautions	Technical considerations
5.Cleaning	Cleaning conditions should be determined after verifying, through a test run, that the cleaning process does not affect the inductor's characteristics.	2. Inappropriate cleaning conditions (insufficient or excessive cleaning) may detrimentally affect the performance of the inductors. (1) Excessive cleaning In the case of ultrasonic cleaning, too much power output can cause excessive vibration of the PC board which may lead to the cracking of the inductor or the soldered portion, or decrease the terminal electrodes' strength. Thus the following conditions should be carefully checked; Ultrasonic output Below 20 w/& Ultrasonic frequency Below 40 kHz Ultrasonic washing period 5 min. or less
6. Post cleaning processes	 ◆Application of resin coatings, moldings, etc. to the PCB and components. 1. With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the inductor's performance. 2. When a resin's hardening temperature is higher than the inductor's operating temperature, the stresses generated by the excess heat may lead to inductor damage or destruction. 3. Stress caused by a resin's temperature generated expansion and contraction may damage inductors. The use of such resins, molding materials etc. is not recommended. 	
7. Handling	 ◆Breakaway PC boards (splitting along perforations) 1. When splitting the PC board after mounting inductors and other components, care is required so as not to give any stresses of deflection or twisting to the board. 2. Board separation should not be done manually, but by using the appropriate devices. ◆General handling precautions 1. Always wear static control bands to protect against ESD. 2. Keep the inductors away from all magnets and magnetic objects. 3. Use non-magnetic tweezers when handling inductors. 4. Any devices used with the inductors (soldering irons, measuring instruments) should be properly grounded. 5. Keep bare hands and metal products (i.e., metal desk) away from chip electrodes or conductive areas that lead to chip electrodes. 6. Keep inductors away from items that generate magnetic fields such as speakers or coils. ◆Mechanical considerations 1. Be careful not to subject the inductors to excessive mechanical shocks. (1) If inductors are dropped on the floor or a hard surface they should not be used. (2) When handling the mounted boards, be careful that the mounted components do not come in contact with or bump against other boards or components. 	

PRECAUTIONS 7/7

Stages	Precautions	Technical considerations
8. Storage conditions	◆Storage 1. To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions Ambient temperature Below 40 °C Humidity Below 70% RH The ambient temperature must be kept below 30 °C. Even under ideal storage conditions inductor electrode solderability decreases as time passes, so inductors should be used within 6 months from the time of delivery. *The packaging material should be kept where no chlorine or sulfur exists in the air.	If the parts are stocked in a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. For this reason, components should be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the inductors