

Vishay Siliconix

COMPLIANT

Precision CMOS Analog Switches

DESCRIPTION

The DG417, DG418, DG419 monolithic CMOS analog switches were designed to provide high performance switching of analog signals. Combining low power, low leakages, high speed, low on-resistance and small physical size, the DG417 series is ideally suited for portable and battery powered industrial and military applications requiring high performance and efficient use of board space.

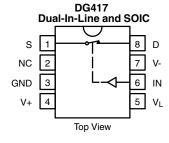
To achieve high-voltage ratings and superior switching performance, the DG417 series is built on Vishay Siliconix's high voltage silicon gate (HVSG) process. Break-beforemake is guaranteed for the DG419, which is an SPDT configuration. An epitaxial layer prevents latchup.

Each switch conducts equally well in both directions when on, and blocks up to the power supply level when off.

The DG417 and DG418 respond to opposite control logic levels as shown in the Truth Table.

FEATURES

- ± 15 V analog signal range
- On-resistance R_{DS(on)}: 20 Ω
- Fast switching action t_{ON}: 100 ns
- Ultra low power requirements P_D: 35 nW
- TTL and CMOS compatible
- · MiniDIP and SOIC packaging
- 44 V supply max. rating
- 44 V supply max. rating
- Compliant to RoHS directive 2002/95/EC


BENEFITS

- · Wide dynamic range
- · Low signal errors and distortion
- · Break-before-make switching action
- · Simple interfacing
- · Reduced board space
- Improved reliability

APPLICATIONS

- · Precision test equipment
- · Precision instrumentation
- · Battery powered systems
- Sample-and-hold circuits
- · Military radios
- Guidance and control systems
- Hard disk drives

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

	Dua	DG al-In-Liı	419 ne an	d S	SOIC	;
D S ₁ GND V+	1 2 3				8 7 6 5	S ₂ V- IN V _L
		Тор	View			

TRUTH TABLE									
Logic	DG417	DG418							
0	ON	OFF							
1	OFF	ON							

 $\begin{array}{l} Logic \ "0" \leq 0.8 \ V \\ Logic \ "1" \geq 2.4 \ V \end{array}$

TRUTH TABLE DG419								
Logic SW ₁ SW ₂								
0	ON	OFF						
1	OFF	ON						

 $\begin{array}{l} Logic \ "0" \leq 0.8 \ V \\ Logic \ "1" \geq 2.4 \ V \end{array}$

^{*} Pb containing terminations are not RoHS compliant, exemptions may apply

DG417, DG418, DG419

Vishay Siliconix

ORDERING INFORMATION						
Temp. Range	Package	Part Number				
DG417, DG418						
	8-Pin Plastic MiniDIP	DG417DJ DG417DJ-E3				
	o-Fili Flastic Willildir	DG418DJ DG418DJ-E3				
- 40 °C to 85 °C	0 Bio Novou COIC	DG417DY DG417DY-E3 DG417DY-T1 DG417DY-T1-E3				
	8-Pin Narrow SOIC	DG418DY DG418DY-E3 DG418DY-T1 DG418DY-T1-E3				
DG419	·					
	8-Pin Plastic MiniDIP	DG419DJ DG419DJ-E3				
- 40 °C to 85 °C	8-Pin Narrow SOIC	DG419DY DG419DY-E3 DG419DY-T1 DG419DY-T1-E3				

Parameter (Voltages referenced	to V-)	Limit	Unit	
V+		44		
GND		25	V	
V _L		(GND - 0.3) to (V+) + 0.3		
Digital Inputs ^a , V _S , V _D		(V-) - 2 to (V+) + 2 or 30 mA, whichever occurs first		
Current , (Any Terminal) Continuous		30	mA	
Current, S or D (Pulsed at 1 ms,	10 % Duty Cycle)	100	IIIA	
Storage Temperature	(AK Suffix)	- 65 to 150	°C	
Storage Temperature	(DJ, DY Suffix)	- 65 to 125		
	8-Pin Plastic MiniDIP ^c	400		
Power Dissipation (Package) ^b	8-Pin Narrow SOIC ^d	400	mW	
	8-Pin CerDIP ^e	600		

Notes:

- a. Signals on S_X , D_X , or IN_X exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads welded or soldered to PC board.
- c. Derate 6 mW/°C above 75 °C.
- d. Derate 6.5 mW/°C above 75 °C.
- e. Derate 12 mW/°C above 75 °C.

SCHEMATIC DIAGRAM Typical Channel

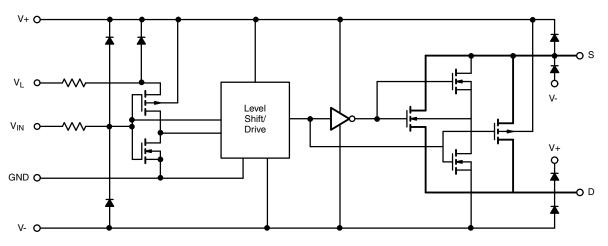


Figure 1.

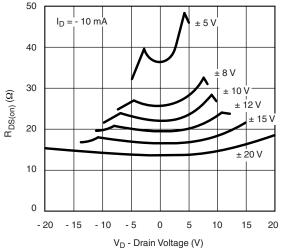
SPECIFICATIONS ^a										
		Test Conditions Unless Otherwise Specified V+ = 15 V, V- = - 15 V				A Suffix - 55 °C to 125 °C		D Suffix - 40 °C to 85 °C		
Parameter	Symbol	$V_L = 5 \text{ V}, V_{IN} = 2.4 \text{ V}, 0.$		Temp.b	Typ.c	Min.d	Max.d	Min.d	Max. ^d	Unit
Analog Switch				<u> </u>					L	
Analog Signal Range ^e	V _{ANALOG}			Full		- 15	15	- 15	15	V
Drain-Source On-Resistance	R _{DS(on)}	I _S = - 10 mA, V _D = ± 12 V+ = 13.5 V, V- = - 13.5		Room Full	20		35 45		35 45	Ω
	I _{S(off)}	V+ = 16.5, V- = - 16.5 V		Room Full	- 0.1	- 0.25 - 20	0.25 20	- 0.25 - 5	0.25 5	
Switch Off Leakage Current	I _{D(off)}	$V_D = \pm 15.5 \text{ V}$ $V_S = \pm 15.5 \text{ V}$	DG417 DG418	Room Full	- 0.1	- 0.25 - 20	0.25 20	- 0.25 - 5	0.25 5	
	Vg - ± 15.5 V	VS = 1 10.0 V	DG419	Room Full	- 0.1	- 0.75 - 60	0.75 60	- 0.75 - 12	0.75 12	nA
Channel Off Leakage	I _{D(on)}	V+ = 16.5 V, V- = -16.5 V $V_S = V_D = \pm 15.5 \text{ V}$	DG417 DG418	Room Full	- 0.4	- 0.4 - 40	0.4 40	- 0.4 - 10	0.4 10	
Current			DG419	Room Full	- 0.4	- 0.75 - 60	0.75 60	- 0.75 - 12	0.75 12	
Digital Control										
Input Current V _{IN} Low	I _{IL}			Full	0.005	- 0.5	0.5	- 0.5	0.5	μΑ
Input Current V _{IN} High	I _{IH}			Full	0.005	- 0.5	0.5	- 0.5	0.5	I
Dynamic Characteristi	cs		T	, <u> </u>		1	T		T	
Turn-On Time	t _{ON}	$R_L = 300 \Omega$, $C_L = 35 pF$ $V_S = \pm 10 V$	DG417 DG418	Room Full	100		175 250		175 250	
Turn-Off Time	t _{OFF}	See Switching Time Test Circuit	DG417 DG418	Room Full	60		145 210		145 210	
Transition Time	t _{TRANS}	$R_L = 300 \Omega, C_L = 35 pF$ $V_{S1} = \pm 10 V, V_{S2} = \pm 10 V$	DG419	Room Full			175 250		175 250	ns
Break-Before-Make Time Delay (DG403)	t _D	$R_L = 300 \Omega, C_L = 35 pF$ $V_{S1} = V_{S2} = \pm 10 V$	DG419	Room	13	5		5		
Charge Injection	Q	$C_L = 10 \text{ nF}, V_{gen} = 0 \text{ V}, R_{ge}$	n = 0 Ω	Room	60					рС

DG417, DG418, DG419

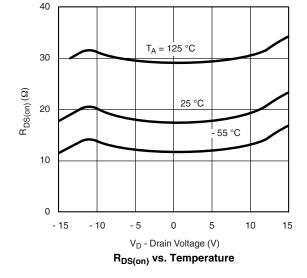
Vishay Siliconix

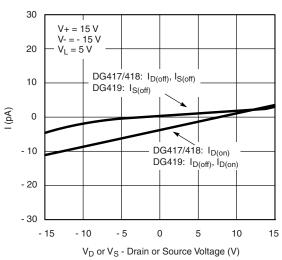
SPECIFICATION	S ^a									
		Test Conditions Unless Otherwise Specified				_	uffix o 125 °C	_	uffix to 85 °C	
Parameter	Symbol	V+ = 15 V, V- = - 15 V $V_L = 5 V, V_{IN} = 2.4 V, 0.8 V^f$		Temp.b	Typ. ^c	Min. ^d	Max. ^d	Min. ^d	Max. ^d	Unit
Dynamic Characteristi	cs						•			
Source Off Capacitance	C _{S(off)}	f 1 MH= V 0 V		Room	8					
Drain Off Capacitance	C _{D(off)}	f = 1 MHz, V _S = 0 V	DG417 DG418	Room	8					pF
Channel On Capacitance	C _{D(on)}	f = 1 MHz, V _S = 0 V	DG417 DG418	Room	30					
Сараспансе	, ,		DG419	Room	35					
Power Supplies										
Positive Supply Current	l+			Room Full	0.001		1 5		1 5	
Negative Supply Current	I-	V+ = 16.5 V, V- = - 16.5 V V _{IN} = 0 or 5 V		Room Full	- 0.001	- 1 - 5		- 1 - 5		μΑ
Logic Supply Current	ΙL			Room Full	0.001		1 5		1 5	μΑ
Ground Current	I _{GND}			Room Full	- 0.0001	- 1 - 5		- 1 - 5		

SPECIFICATIONS ^a for Unipolar Supplies									
		Test Conditions Unless Otherwise Specified			A Suffix - 55 °C to 125 °C		D Suffix - 40 °C to 85 °C		-
Parameter	Symbol	V+ = 12 V, V- = 0 V $V_L = 5 V, V_{IN} = 2.4 V, 0.8 V^f$	Temp.b	Typ. ^c	Min. ^d	Max. ^d	Min. ^d	Max. ^d	Unit
Analog Switch									
Analog Signal Range ^e	V _{ANALOG}		Full		0	12	0	12	V
Drain-Source On-Resistance	R _{DS(on)}	$I_S = -10 \text{ mA}, V_D = 3.8 \text{ V}$ V+ = 10.8 V	Room	40					Ω
Dynamic Characteristi	cs								
Turn-On Time	t _{ON}	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 8 V$	Room	110					
Turn-Off Time	t _{OFF}	See Switching Time Test Circuit	Room	40					ns
Break-Before-Make Time Delay	t _D	DG419 Only $R_L = 300 \Omega$, $C_L = 35 pF$	Room	60					110
Charge Injection	Q	$C_L = 10 \text{ nF, } V_{gen} = 0 \text{ V, } R_{gen} = 0 \Omega$	Room	5					рС
Power Supplies									
Positive Supply Current	l+		Room	0.001					
Negative Supply Current	I-	V+ = 13.2 V, V _L = 5.25 V	Room	- 0.001					μA
Logic Supply Current	IL	$V_{IN} = 0 \text{ or } 5 \text{ V}$	Room	0.001					μΑ
Ground Current	I _{GND}		Room	- 0.001					

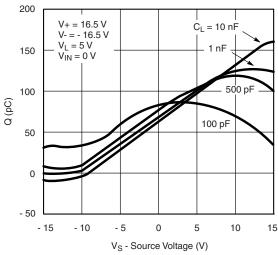

Notes:

- a. Refer to Process Option Flowchart.
- b. Room = 25 $^{\circ}$ C, Full = as determined by the operating temperature suffix.
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- e. Guaranteed by design, not subject to production test.
- f. V_{IN} = input voltage to perform proper function.

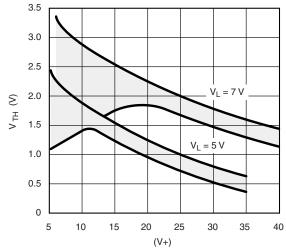

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.



TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

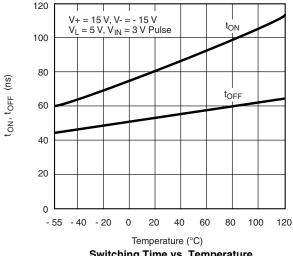


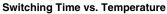
R_{DS(on)} vs. V_D and Supply Voltage

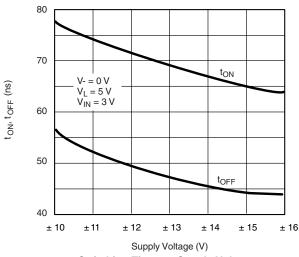


Leakage Currents vs. Analog Voltage

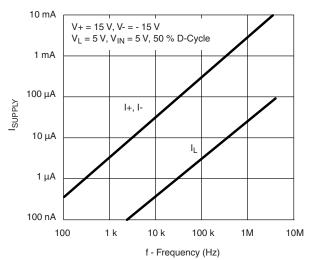
Drain Charge Injection

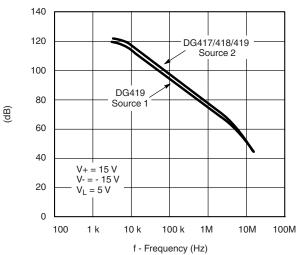


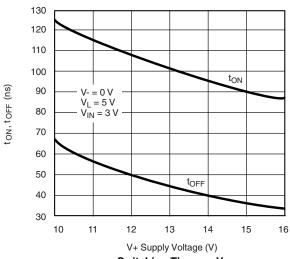

Input Switching Threshold vs. Supply Voltages

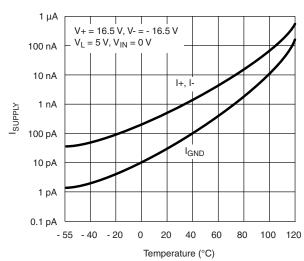

DG417, DG418, DG419

Vishay Siliconix


TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

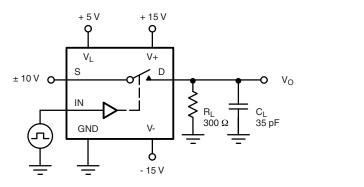



Switching Time vs. Supply Voltages

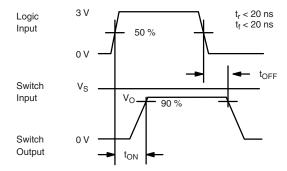

Power Supply Currents vs. Switching Frequency

Crosstalk and Off Isolation vs. Frequency

Switching Time vs. V+



Supply Current vs. Temperature


TEST CIRCUITS

V_O is the steady state output with the switch on.

C_L (includes fixture and stray capacitance)

$$V_O = V_S$$

$$\frac{R_L}{R_L + r_{DS(on)}}$$

Note: Logic input waveform is inverted for switches that have the opposite logic sense.

Figure 2. Switching Time (DG417, DG418)

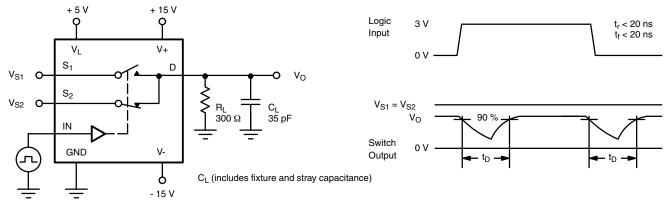


Figure 3. Break-Before-Make (DG419)

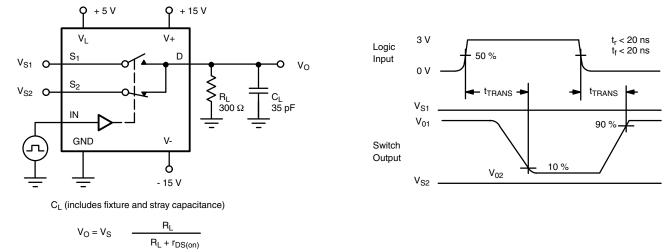
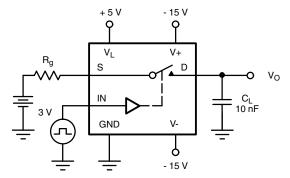



Figure 4. Transition Time (DG419)

Vishay Siliconix

TEST CIRCUITS

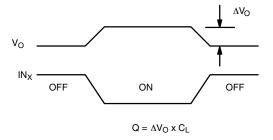
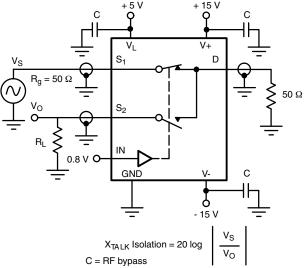
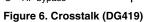




Figure 5. Charge Injection

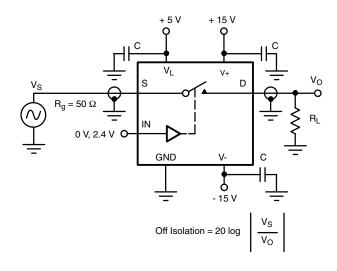


Figure 7. Off Isolation

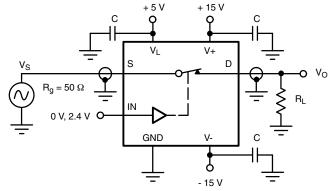


Figure 8. Insertion Loss

TEST CIRCUITS

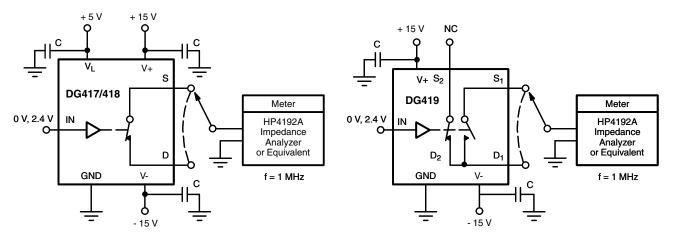


Figure 9. Source/Drain Capacitances

APPLICATIONS

Switched Signal Powers Analog Switch

The analog switch in Figure 10 derives power from its input signal, provided the input signal amplitude exceeds 4 V and its frequency exceeds 1 kHz.

This circuit is useful when signals have to be routed to either of two remote loads. Only three conductors are required: one for the signal to be switched, one for the control signal and a common return.

A positive input pulse turns on the clamping diode D_1 and charges C_1 . The charge stored on C_1 is used to power the chip; operation is satisfactory because the switch requires less than 1 μ A of stand-by supply current. Loading of the signal source is imperceptible. The DG419's on-resistance is a low 100 Ω for a 5 V input signal.

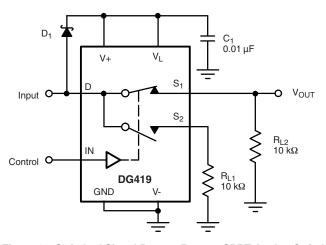


Figure 10. Switched Signal Powers Remote SPDT Analog Switch

Vishay Siliconix

APPLICATIONS

Micropower UPS Transfer Switch

When V_{CC} drops to 3.3 V, the DG417 changes states, closing SW_1 and connecting the backup cell, as shown in Figure 10. D_1 prevents current from leaking back towards the rest of the circuit. Current consumption by the CMOS analog switch is around 100 pA; this ensures that most of the power available is applied to the memory, where it is really needed. In the stand-by mode, hundreds of A are sufficient to retain memory data.

When the 5 V supply comes back up, the resistor divider senses the presence of at least 3.5 V, and causes a new change of state in the analog switch, restoring normal operation.

Programmable Gain Amplifier

The DG419, as shown in figure 11, allows accurate gain selection in a small package. Switching into virtual ground reduces distortion caused by $R_{DS(on)}$ variation as a function of analog signal amplitude.

GaAs FET Driver

The DG419, as shown in figure 12 may be used as a GaAs FET driver. It translates a TTL control signal into - 8 V, 0 V level outputs to drive the gate.

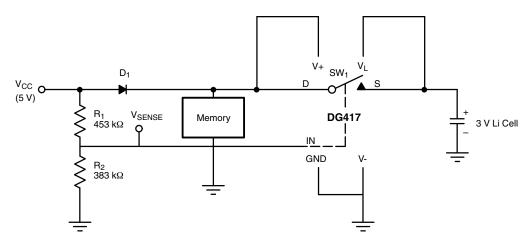


Figure 11. Micropower UPS Circuit

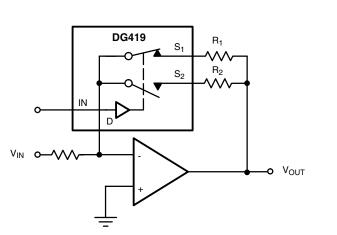


Figure 12. Programmable Gain Amplifier

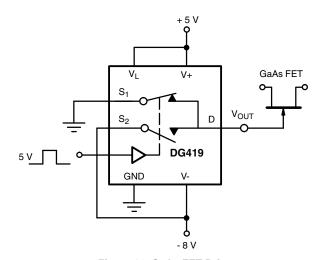


Figure 13. GaAs FET Driver

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?70051.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08