INTEGRATED CIRCUITS

Product specification Supersedes data of 1995 Aug 03 IC23 Data Handbook 1998 Feb 27

Philips Semiconductors

74ABT16373B 74ABTH16373B

FEATURES

- 16-bit transparent latch
- Multiple V_{CC} and GND pins minimize switching noise
- Power-up 3-State
- Live insertion/extraction permitted
- Power-up reset
- 3-State output buffers
- 74ABTH16373B incorporates bus-hold data inputs which eliminate the need for external pull-up resistors to hold unused inputs
- Output capability: +64mA/–32mA
- I_{CCL} –19 mA maximum
- Latch-up protection exceeds 500mA per JEDEC Std 17
- ESD protection exceeds 2000V per MIL STD 883 Method 3015 and 200V per Machine Model

DESCRIPTION

The 74ABT16373B high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive.

The 74ABT16373B device is a dual octal transparent latch coupled to two sets of eight 3-State output buffers. The two sections of the device are controlled independently by Enable (nE) and Output Enable (n \overline{OE}) control gates.

The data on each set of D inputs are transferred to the latch outputs when the Latch Enable (nE) input is High. The latch remains transparent to the data inputs while nE is High, and stores the data that is present one setup time before the High-to-Low enable transition.

The 3-State output buffers are designed to drive heavily loaded 3-State buses, MOS memories, or MOS microprocessors. Each active-Low Output Enable ($n\overline{OE}$) controls eight 3-State buffers independent of the latch operation.

When $n\overline{OE}$ is Low, the latched or transparent data appears at the outputs. When $n\overline{OE}$ is High, the outputs are in the High-impedance "OFF" state, which means they will neither drive nor load the bus.

Two options are available, 74ABT16373B which does not have the bus-hold feature and 74ABTH16373B which incorporates the bus-hold feature.

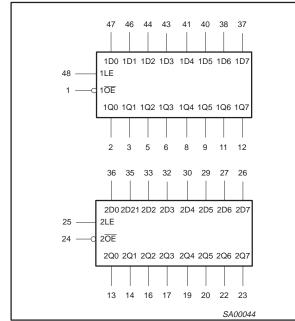
PIN CONFIGURATION

]	
1 0E	1	48	1E
1Q0	2	47	1D0
1Q1	3	46	1D1
GND	4	45	GND
1Q2	5	44	1D2
1Q3	6	43	1D3
V _{CC}	7	42	V _{CC}
1Q4	8	41	1D4
1Q5	9	40	1D5
GND	10	39	GND
1Q6	11	38	1D6
1Q7	12	37	1D7
2Q0	13	36	2D0
2Q1	14	35	2D1
GND	15	34	GND
2Q2	16	33	2D2
2Q3	17	32	2D3
V _{CC}	18	31	V _{CC}
2Q4	19	30	2D4
2Q5	20	29	2D5
GND	21	28	GND
2Q6	22	27	2D6
2Q7	23	26	2D7
20E	24	25	2E
		1_	
		SA	00379

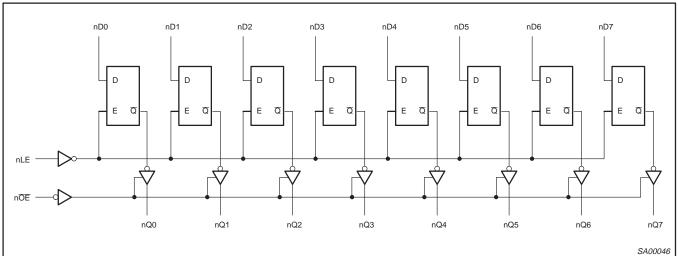
QUICK REFERENCE DATA

SYMBOL	PARAMETER	PARAMETER CONDITIONS T _{amb} = 25°C; GND = 0V			
t _{PLH} t _{PHL}	Propagation delay Dn to Qn	$C_L = 50 pF; V_{CC} = 5V$	2.5 2.0	ns	
C _{IN}	Input capacitance	$V_I = 0V \text{ or } V_{CC}$	4	pF	
C _{OUT}	Output capacitance	$V_O = 0V \text{ or } V_{CC}$; 3-State	7	pF	
I _{CCZ}	Quiescent supply current	Outputs disabled; $V_{CC} = 5.5V$	500	μΑ	
I _{CCL}		Outputs low; $V_{CC} = 5.5V$	8	mA	

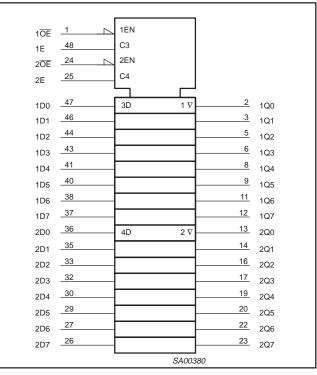
ORDERING INFORMATION


PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
48-Pin SSOP type III	-40°C to +85°C	74ABT16373B DL	BT16373B DL	SOT370-1
48-Pin TSSOP type II	–40°C to +85°C	74ABT16373B DGG	BT16373B DGG	SOT362-1
48-Pin SSOP type III	–40°C to +85°C	74ABTH16373B DL	BH16373B DL	SOT370-1
48-Pin TSSOP type II	–40°C to +85°C	74ABTH16373B DGG	BH16373B DGG	SOT362-1

74ABT16373B 74ABTH16373B


PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
47, 46, 44, 43, 41, 40, 38, 37, 36, 35, 33, 32, 30, 29, 27, 26	1D0 – 1D7 2D0 – 2D7	Data inputs
2, 3, 5, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 20, 22, 23	1Q0 – 1Q7 2Q0 – 2Q7	Data outputs
1, 24	1 <u>0E</u> , 2 <u>0E</u>	Output enable inputs (active-Low)
48, 25	1E, 2E	Enable inputs (active-High)
4, 10, 15, 21, 28, 34, 39, 45	GND	Ground (0V)
7, 18, 31, 42	V _{CC}	Positive supply voltage


LOGIC SYMBOL

LOGIC DIAGRAM

LOGIC SYMBOL (IEEE/IEC)

74ABT16373B 74ABTH16373B

FUNCTION TABLE

	INPUTS		INTERNAL	OUTPUTS	OPERATING MODE
nOE	nE	nDx	REGISTER	nQ0 – nQ7	OPERATING MODE
L	H H	L H	L H	L H	Enable and read register
L	$\stackrel{\downarrow}{\rightarrow}$	i h	L H	L H	Latch and read register
L	L	Х	NC	NC	Hold
H H	L H	X Dn	NC Dn	Z Z	Disable outputs

H = High voltage level

h = High voltage level one set-up time prior to the High-to-Low E transition

L = Low voltage level

= Low voltage level one set-up time prior to the High-to-Low E transition

NC= No change

X = Don't care

Z = High impedance "off" state

 \downarrow = High-to-Low E transition

ABSOLUTE MAXIMUM RATINGS^{1, 2}

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
Ι _{ΙΚ}	DC input diode current	V ₁ < 0	-18	mA
VI	DC input voltage ³		-1.2 to +7.0	V
I _{OK}	DC output diode current	V _O < 0	-50	mA
V _{OUT}	DC output voltage ³	output in Off or High state	-0.5 to +5.5	V
	DC output ourroat	output in Low state	128	
IOUT	DC output current	output in High state	-64	- mA
T _{stg}	Storage temperature range		-65 to 150	°C

NOTES:

 Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.

3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIM	ITS	UNIT
STMBOL	PARAMETER	MIN	MAX	UNIT
V _{CC}	DC supply voltage	4.5	5.5	V
VI	Input voltage	0	V _{CC}	V
V _{IH}	High-level input voltage	2.0		V
V _{IL}	Low-level Input voltage		0.8	V
I _{ОН}	High-level output current		-32	mA
I _{OL}	Low-level output current		64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	0	10	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	°C

74ABT16373B 74ABTH16373B

DC ELECTRICAL CHARACTERISTICS

					LIMITS				
SYMBOL	PARAMETER	TEST CONDITION	IS	Та	_{mb} = +25	o° C		= –40°C 85°C	UNIT
				MIN	TYP	MAX	MIN	MAX	1
V _{IK}	Input clamp voltage	$V_{CC} = 4.5 V; I_{IK} = -18 mA$			-0.9	-1.2		-1.2	V
		$V_{CC} = 4.5V; I_{OH} = -3mA; V_{I} = V_{CC}$	V _{IL} or V _{IH}	2.5	2.9		2.5		V
V _{OH}	High-level output voltage	$V_{CC} = 5.0$ V; $I_{OH} = -3$ mA; $V_I = V_{IL}$ or V_{IH}		3.0	3.4		3.0		V
		V _{CC} = 4.5V; I _{OH} = -32mA; V _I =	VIL or VIH	2.0	2.4		2.0		V
V _{OL}	Low-level output voltage	$V_{CC} = 4.5V; I_{OL} = 64mA; V_{I} = V_{CC}$	/ _{IL} or V _{IH}		0.42	0.55		0.55	V
V _{RST}	Power-up output voltage ³	$V_{CC} = 5.5V; I_{O} = 1mA; V_{I} = GN$	ID or V _{CC}		0.13	0.55		0.55	V
h	Input leakage current 74ABT16373B	V_{CC} = 5.5V; V_{I} = V_{CC} or GND			±0.01	±1		±1	μΑ
		$V_{CC} = 5.5V$; $V_I = V_{CC}$ or GND	Control pins		±0.01	±1		±1	μΑ
I _I	Input leakage current 74ABTH16373B	$V_{CC} = 5.5V; V_I = V_{CC}$	Determine 5		0.01	1		1	μΑ
	A A B H H OS A B B	$V_{CC} = 5.5V; V_{I} = 0$	Data pins ⁵		-1	-3		-5	μA
		V _{CC} = 4.5V; V _I = 0.8V		50			50	1	
I _{HOLD}	Bus Hold current A inputs ⁶ 74ABTH16373B	$V_{CC} = 4.5V; V_{I} = 2.0V$		-75			-75		μA
		$V_{CC} = 5.5$ V; $V_{I} = 0$ to 5.5V		±800				1	
I _{OFF}	Power-off leakage current	V_{CC} = 0.0V; V_{O} or $V_{I} \le 4.5V$			±5.0	±100		±100	μA
I _{PU} /I _{PD}	Power-up/down 3-State output current ⁴	$V_{CC} = 2.1$ V; $V_{O} = 0.5$ V; $V_{I} = G$ V $_{OE} = G$ ND	ND or V _{CC} ;		±5.0	±50		±50	μΑ
I _{OZH}	3-State output High current	$V_{CC} = 5.5V; V_{O} = 5.5V; V_{I} = V_{I}$	_L or V _{IH}		0.5	10		10	μΑ
I _{OZL}	3-State output Low current	$V_{CC} = 5.5V; V_{O} = 0.0V; V_{I} = V_{I}$	_L or V _{IH}		-0.5	-10		-10	μΑ
Ι _Ο	Output current ¹	$V_{CC} = 5.5 V; V_{O} = 2.5 V$		-50	-70	-180	-50	-180	mA
I _{CEX}	Output High leakage current	$V_{CC} = 5.5V; V_{O} = 5.5V; V_{I} = GI$	ND or V _{CC}		0.1	50		50	μA
I _{CCH}		V_{CC} = 5.5V; Outputs High, V_{I} =	GND or $V_{\mbox{CC}}$		0.5	2		2	mA
I _{CCL}	Quiescent supply current	V_{CC} = 5.5V; Outputs Low, V_{I} =	GND or V_{CC}		8	19		19	mA
I _{CCZ}		V_{CC} = 5.5V; Outputs 3-State; V _I = GND or V _{CC}			0.5	2		2	mA
ΔI_{CC}	Additional supply current per input pin ² 74ABT16373B	V_{CC} = 5.5V; one input at 3.4V, at V_{CC} or GND	other inputs		5	100		100	μA
ΔI_{CC}	Additional supply current per input pin ² 74ABTH16373B	V_{CC} = 5.5V; one input at 3.4V, at V_{CC} or GND	other inputs		0.5	1.5		1.5	mA

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

2. This is the increase in supply current for each input at 3.4V.

3. For valid test results, data must not be loaded into the flip-flops (or latches) after applying the power. 4. This parameter is valid for any V_{CC} between 0V and 2.1V, with a transition time of up to 10msec. From $V_{CC} = 2.1$ to $V_{CC} = 5V \pm 10\%$ a transition time of up to 100µsec is permitted.

5. Unused pins at V_{CC} or GND.

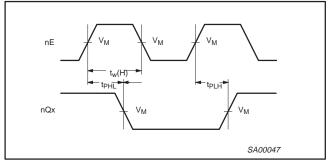
6. This is the bus hold overdrive current required to force the input to the opposite logic state.

74ABT16373B 74ABTH16373B

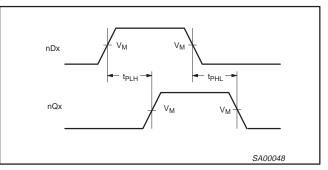
AC CHARACTERISTICS

GND = 0V, $t_R = t_F = 2.5 \text{ns}$, $C_L = 50 \text{pF}$, $R_L = 500 \Omega$

				LIMITS					
SYMBOL	PARAMETER	WAVEFORM	T _{amb} = +25°C V _{CC} = +5.0V			$T_{amb} = -40$ $V_{CC} = +5$	UNIT		
			MIN	ТҮР	MAX	MIN	MAX		
t _{PLH} t _{PHL}	Propagation delay nDx to nQx	2	1.5 1.1	2.5 2.0	3.8 3.1	1.5 1.1	4.4 3.8	ns	
t _{PLH} t _{PHL}	Propagation delay nE to nQx	1	1.6 1.3	2.5 2.1	3.8 3.1	1.6 1.3	4.4 3.6	ns	
t _{PZH} t _{PZL}	Output enable time to High and Low level	4 5	1.2 1.3	2.3 2.3	3.5 3.5	1.2 1.3	4.6 4.5	ns	
t _{PHZ} t _{PLZ}	Output disable time from High and Low level	4 5	1.9 1.7	3.1 2.6	4.5 3.8	1.9 1.7	5.3 4.2	ns	


AC SETUP REQUIREMENTS

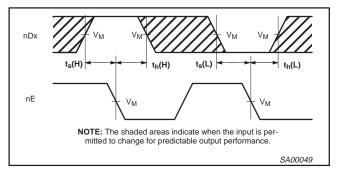
GND = 0V, $t_R = t_F = 2.5$ ns, $C_L = 50$ pF, $R_L = 500\Omega$


		WAVEFORM				
SYMBOL	PARAMETER		T _{amb} = V _{CC} =	= +25°C = +5.0V	$\begin{array}{l} T_{amb} = -40 \text{ to } +85^\circ\text{C} \\ V_{CC} = +5.0\text{V} \pm 0.5\text{V} \end{array}$	UNIT
			MIN	TYP	MIN	
t _s (H) t _s (L)	Setup time, High or Low nDx to nE	3	1.0 1.0	0.0 0.3	1.0 1.0	ns
t _h (H) t _h (L)	Hold time, High or Low nDx to nE	3	0.5 0.5	-0.2 0.0	0.5 0.5	ns
t _w (H)	Enable pulse width High	1	2.5	1.0	2.5	ns

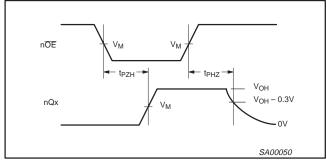
AC WAVEFORMS

For all waveforms, $V_M = 1.5V$.

Waveform 1. Propagation Delay, Enable to Output, and Enable Pulse Width

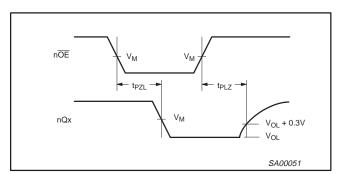


Waveform 2. Propagation Delay for Data to Outputs

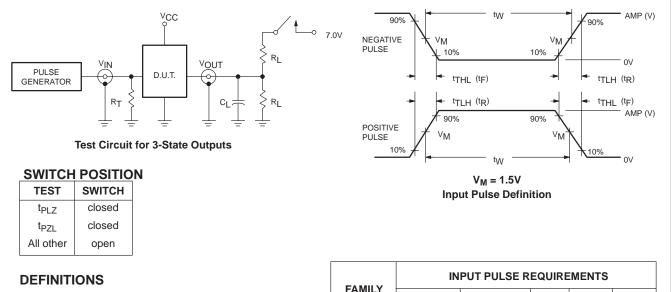

74ABT16373B

74ABTH16373B

16-bit transparent latch (3-State)



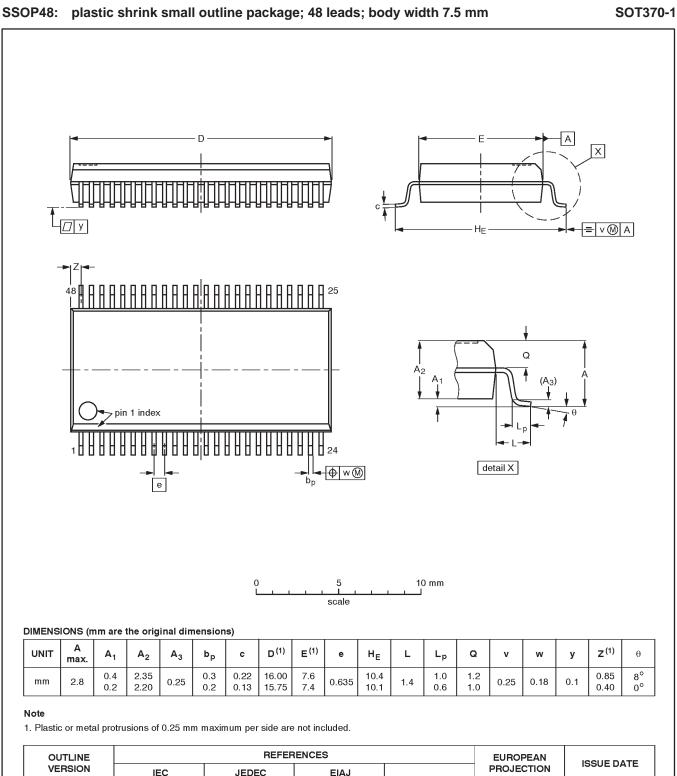
Waveform 3. Data Setup and Hold Times



Waveform 4. 3-State Output Enable Time to High Level and Output Disable Time from High Level

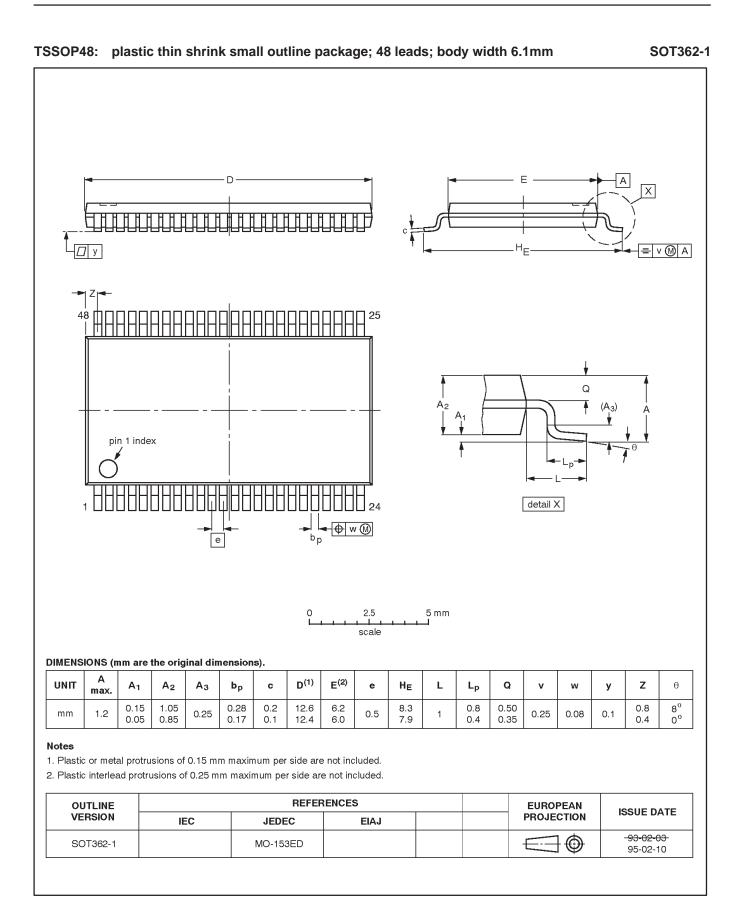
TEST CIRCUIT AND WAVEFORM

Waveform 5. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level



- $\mathsf{R}_{\mathsf{L}} = \ \mathsf{Load} \ \mathsf{resistor}; \ \mathsf{see} \ \mathsf{AC} \ \mathsf{CHARACTERISTICS} \ \mathsf{for} \ \mathsf{value}.$
- $\label{eq:CL} \begin{array}{ll} C_L = & Load \mbox{ capacitance includes jig and probe capacitance;} \\ & see \mbox{ AC CHARACTERISTICS for value.} \end{array}$
- $\label{eq:RT} \mathsf{R}_\mathsf{T} = \quad \text{Termination resistance should be equal to } \mathsf{Z}_\mathsf{OUT} \text{ of } \\ \text{pulse generators.}$

FAMILY	INPUT PULSE REQUIREMENTS							
	Amplitude	Rep. Rate	t _W	t _R	t _F			
74ABT/H16	3.0V	1MHz	500ns	2.5ns	2.5ns			


SA00018

74ABT16373B 74ABTH16373B

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT370-1		MO-118AA			-93-11-02 95-02-04

74ABT16373B 74ABTH16373B

1998 Feb 27

74ABT16373B 74ABTH16373B

Data sheet status

Data sheet status	Product status	Definition ^[1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code

Document order number:

Date of release: 05-96 9397-750-03491

Let's make things better.

