- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- B-Port Outputs Have Equivalent $25-\Omega$ Series Resistors, So No External Resistors Are Required
- State-of-the-Art EPIC-IIBTM BiCMOS Design Significantly Reduces Power Dissipation
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Typical $\mathrm{V}_{\mathrm{OLP}}$ (Output Ground Bounce) $<1 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Impedance State During Power Up and Power Down
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) Package and $380-\mathrm{mil}$ Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

description

The 'ABTH162460 are 4-bit to 1-bit multiplexed registered transceivers used in applications where four separate data paths must be multiplexed onto or demultiplexed from a single data path. Typical applications include multiplexing and/or demultiplexing of address and data information in microprocessor or bus-interface applications. This device also is useful in memory-interleaving applications.
Five 4-bit I/O ports (1A-4A, 1B1-4, 2B1-4, 3B1-4, and 4B1-4) are available for address and/or data transfer. The output-enable ($\overline{\mathrm{OEB}}, \overline{\mathrm{OEB1}}-\overline{\mathrm{OEB4}}$, and $\overline{\mathrm{OEA}}$) inputs control the bus-transceiver functions. These control signals also allow 4-bit or 16-bit control, depending on the $\overline{\mathrm{OEB}}$ level.

description (continued)

Address and/or data information can be stored using the internal storage latches/flip-flops. The latch-enable (LEB1-LEB4, LEBA, and LEAB1-LEAB4) and clock/clock-enable (CLK/CLKEN) inputs are used to control data storage. When either one of the latch-enable inputs is high, the latch is transparent (clock is a don't care as long as the latch enable is high). When the latch-enable input goes low (providing that the clock does not transit from low to high), the data present at the inputs is latched and remains latched until the latch-enable input is returned high. When the clock enable is low and the corresponding latch enable is low, data can be clocked on the low-to-high transition of the clock. When either the clock enable or the corresponding latch enable is high, the clock is a don't care.

Four select (SELO, SEL1, CE_SELO, and CE_SEL1) pins are provided to multiplex data (A port), or to select one of four clock enables (B port). This allows the user the flexibility of controlling one bit at a time.
The B-port outputs, which are designed to sink up to 12 mA , include equivalent $25-\Omega$ series resistors to reduce overshoot and undershoot.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
When V_{CC} is between 0 and 2.1 V , the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V , $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The SN54ABTH162460 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABTH162460 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Function Tables
A-TO-B OUTPUT ENABLE \dagger

INPUTS		OUTPUT
$\overline{\text { OEB }}$	$\overline{\text { OEBn }}$	Bn
H	H	Z
H	L	Z
L	H	Z
L	L	Active

$\dagger \mathrm{n}=1,2,3,4$
A-TO-B STORAGE
(assuming $\overline{\mathrm{OEB}}=\mathrm{L}, \overline{\mathrm{OEBn}}=\mathrm{L}$) \ddagger

INPUTS								OUTPUTS			
CLKENAB	CE_SEL1	CE_SELO	CLKAB	LEAB1	LEAB2	LEAB3	LEAB4	B1	B2	B3	B4
X	X	X	H or L	H	L	L	L	A	A_{0}	A_{0}	A_{0}
X	X	X	H or L	H	H	H	L	A	A	A	A_{0}
L	X	X	L	L	L	L	L	A_{0}	A_{0}	A_{0}	A_{0}
L	L	L	\uparrow	L	L	L	L	A	A_{0}	A_{0}	A_{0}
L	L	H	\uparrow	L	L	L	L	A_{0}	A	A_{0}	A_{0}
L	H	L	\uparrow	L	L	L	L	A_{0}	A_{0}	A	A_{0}
L	H	H	\uparrow	L	L	L	L	A_{0}	A_{0}	A_{0}	A
H	X	X	\uparrow	L	L	L	L	A_{0}	A_{0}	A_{0}	A_{0}

\ddagger This table does not cover all the latch-enable cases since they have similar results.

Function Tables (Continued)

B-TO-A STORAGE (before point P)								
INPUTS								P
CLKENB	CLKBA	LEB1	LEB2	LEB3	LEB4	SEL1	SELO	
X	X	H	L	L	L	L	L	B1
X	X	L	H	L	L	L	H	B2
X	X	L	L	H	L	H	L	B3
X	X	L	L	L	H	H	H	B4
L	\uparrow	L	L	L	L	L	L	B1
						L	H	B2
						H	L	B3
						H	H	B4
			L		L	L	L	B10 ${ }^{\dagger}$
						L	H	B20 ${ }^{\dagger}$
						H	L	B30 ${ }^{\dagger}$
						H	H	$B 40^{\dagger}$

\dagger Output level before the indicated steady-state input conditions were established

> B-TO-A STORAGE
(after point P)

INPUTS					OUTPUT
CLKENBA	CLKBA	LEBA	$\overline{\text { OEA }}$	B	A
X	X	X	H	X	Z
X	X	H	L	L	L
X	X	H	L	H	H
H	X	L	L	X	$\mathrm{A}_{0} \dagger$
L	\uparrow	L	L	L	L
L	\uparrow	L	L	H	H
L	L	L	L	X	$\mathrm{A}_{0} \dagger$

\dagger Output level before the indicated steady-state input conditions were established

SN54ABTH162460, SN74ABTH162460
4-TO-1 MULTIPLEXED/DEMULTIPLEXED REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS
SCBS241E - FEBRUARY 1993 - REVISED MAY 1997
logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) ${ }^{\dagger}$
Supply voltage range, V_{CC} -0.5 V to 7 V
Input voltage range, V_{I} (except I/O ports) (see Note 1) -0.5 V to 7 V
Voltage range applied to any output in the high or power-off state, V_{O} -0.5 V to 5.5 V
Current into any output in the low state, $\mathrm{I}_{\mathrm{O}}:$ SN54ABTH162460 (A port) 96 mA
SN74ABTH162460 (A port) 128 mA
B port 30 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$ -18 mA
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right)$ $-50 \mathrm{~mA}$
Package thermal impedance, θ_{JA} (see Note 2): DL package $74^{\circ} \mathrm{C} / \mathrm{W}$
Storage temperature range, $T_{\text {stg }}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.
recommended operating conditions (see Note 3)

NOTE 3: Unused control pins must be held high or low to prevent them from floating.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54ABTH162460		SN74ABTH162460			UNIT		
		MIN	TYP† MAX	MIN	TYP†	MAX					
VIK				$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$		-1.2			-1.2	V
V_{OH}	A port	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{IOH}=-3 \mathrm{~mA}$	3	3.4	3	3.4		V		
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOH}=-3 \mathrm{~mA}$	2.5	3						
			$\mathrm{IOH}=-32 \mathrm{~mA}$			2	2.7				
	B port	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{IOH}=-1 \mathrm{~mA}$	3.8	4.2	3.85					
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOH}=-1 \mathrm{~mA}$	3.3	3.7	3.35					
			$\mathrm{IOH}=-3 \mathrm{~mA}$	3	3.6	3.1					
			$\mathrm{I} \mathrm{OH}=-12 \mathrm{~mA}$			2.6					
V_{OL}	A port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}=24 \mathrm{~mA}$		$0.25 \quad 0.55$				V		
			$\mathrm{l} \mathrm{OL}=64 \mathrm{~mA}$				0.3	0.55			
	B port	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I} \mathrm{OL}=8 \mathrm{~mA}$		0.40 .8		0.4	0.65			
			$\mathrm{lOL}=12 \mathrm{~mA}$				0.5	0.8			
Vhys					100		100		mV		
1	Control inputs	$\mathrm{V}_{\mathrm{CC}}=0$ to $5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND		41				± 1	$\mu \mathrm{A}$		
	A or B ports	$\mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V}$ to 5.5 V ,	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND		± 20			± 20			
$1 /$ (hold)	A or B ports	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=0.8 \mathrm{~V}$	75	\& 500	75		500	$\mu \mathrm{A}$		
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}$	-75	3) -500	-75		-500			
10^{\ddagger}	A port	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-50	-110 -180	-50		-180	mA		
	B port	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-25	-55	-25		-90			
			$\mathrm{V}_{\mathrm{O}}=0$	-50	-110 -180	-50		-180			
ICEX	Outputs high	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		50			50	$\mu \mathrm{A}$		
$l_{\text {off }}$		$\mathrm{V}_{\mathrm{CC}}=0$,	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$		± 100			± 100	$\mu \mathrm{A}$		
${ }^{\text {l OZPU }}$		$\mathrm{V}_{\mathrm{CC}}=0$ to $2.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$ to $2.7 \mathrm{~V}, \overline{\mathrm{OE}}=\mathrm{X}$			± 50			± 50	$\mu \mathrm{A}$		
$\mathrm{I}_{\text {OZPD }}{ }^{\text {§ }}$		$\mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V}$ to $0, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$ to $2.7 \mathrm{~V}, \overline{\mathrm{OE}}=\mathrm{X}$			± 50			± 50	$\mu \mathrm{A}$		
ICC	Outputs high	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, Outputs open			1.5		0.7	1.5	mA		
	A port low				10		6	10			
	B port low				32		18	32			
	Outputs disabled				1.5		0.7	1.5			
$\left.\triangle_{\text {l }} \mathrm{CC}\right]^{\text {I }}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND			1			1	mA		
C_{i}	Control inputs	$\mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V}$ or 0.5 V		3.5			3.5		pF		
C_{io}	A or B ports	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5 V		8		8			pF		

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
§ This parameter is characterized but not production tested.
IThis is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(see Figure 1)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			SN54ABTH162460		SN74ABTH162460		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$f_{\text {max }}$			160			160		160		MHz
tPLH	B	A	2	3.6	5.9	2	7.1	2	6.5	ns
tPHL			2	3.5	5.8	2	6.8	2	6.5	
tPZH	$\overline{O E A}$	A	1.5	2.8	4.8	1.5	5.9	1.5	5.6	ns
tpZL			1.5	2.6	4.8	1.5	5.7	1.5	5.5	
tPHZ	$\overline{O E A}$	A	2	3.8	5.3	2	6	2	5.9	ns
tplZ			1.5	4	6.1	1.5	7	1.5	6.5	
tPLH	A	B	2	3.3	5.5	2	6.5	2	6.2	ns
tPHL			2	3.7	5.8	2	6.8	2	6.5	
tPZH	$\overline{\mathrm{OEB}}$	B	2	3.9	5.8	2	7.1	2	6.8	ns
tPZL			2	3.7	5.6	2	6.6	1.5	6.3	
tPHZ	$\overline{\text { OEB }}$	B	2	4	5.6	2	- 6.4	2	6.2	ns
tpLZ			2	3.7	5.2	2	6.1	2	5.8	
tPZH	$\overline{\text { OEB1 }}$, $\overline{2}, \overline{3}, \overline{4}$	B	2	3.7	5.8	2	6.8	2	6.6	ns
tPZL			2	3.5	5.4	3	6.4	2	6.2	
tphz	$\overline{\text { OEB1, }} \overline{2}, \overline{3}, \overline{4}$	B	1.5	3.3	4.8	d. 5	5.4	1.5	5.3	ns
tpLZ			1.5	3.1	4.4	Q 1.5	5.1	1.5	4.9	
tPLH	CLKBA	A	1.5	4.2	6.7	1.5	8.1	1.5	7.4	ns
tPHL			1.5	4.4	6.9	1.5	8.4	1.5	7.7	
tpLH	CLKAB	B	2	3.5	5.8	2	6.9	2	6.5	ns
tPHL			2	3.7	6	2	7	2	6.5	
tPLH	LEBA	A	1.5	3	5.2	1.5	6.3	1.5	5.8	ns
tPHL			1.5	3	5	1.5	6.3	1.5	5.8	
tPLH	LEAB1, 2, 3, 4	B	2	3.4	5.4	2	6.5	2	6.2	ns
tPHL			2	3.6	5.7	2	6.3	2	6.2	
tPLH	LEBA1, 2, 3, 4	A	2	4	6.5	2	7.8	2	7.2	ns
tpHL			2	4	6.1	2	7.5	2	6.8	
tPLH	SEL	A	2	4.1	6.7	2	8.1	2	7.5	ns
tPHL			2	3.8	6.2	2	7.3	2	6.9	

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status $^{(1)}$	Package Type	Package Drawing	Pins Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
74ABTH162460DGGRE4	ACTIVE	TSSOP	DGG	56	TBD	Call TI	Call TI
74ABTH162460DGGRG4	ACTIVE	TSSOP	DGG	56	TBD	Call TI	Call TI
74ABTH162460DLG4	ACTIVE	SSOP	DL	56	TBD	Call TI	Call TI
74ABTH162460DLRG4	ACTIVE	SSOP	DL	56	TBD	Call TI	Call TI

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb -Free/Green conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb -Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold protrusion not to exceed 0,15.
D. Falls within JEDEC MO-153

PIM	$\mathbf{2 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	0.380 $(9,65)$	0.630 $(16,00)$	0.730 $(18,54)$
A MIN	0.370 $(9,40)$	0.620 $(15,75)$	0.720 $(18,29)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MO-118

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers

Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsw.ti.com
www.ti.com/clocks
nterface.ti.com
ogic.ti.com
oower.ticom
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprt

Applications	
Audio	www.ti.com/audio
Automotive	www.ticom/automotiva
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontro
Medical	www.ti.com/medica
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	Www.ti.com/security
Telephony	Www.ti.com/telephony
Video \& Imaging	www.ti.com/vided
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated

