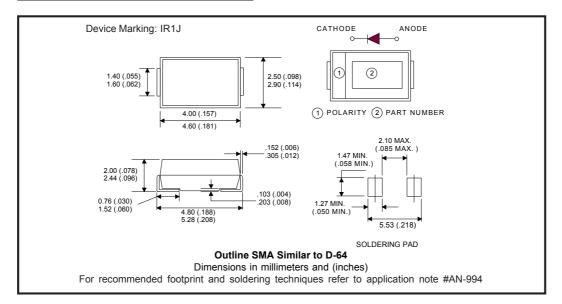
International **tor** Rectifier

SCHOTTKY RECTIFIER

10MQ100N

2.1 Amp


Major Ratings and Characteristics

Characteristics	10MQ100N	Units
I _F DC	2.1	А
V _{RRM}	100	V
I _{FSM} @tp=5µssine	120	А
V _F @1.5Apk, T _J =125°C	0.68	V
T _J range	- 55 to 150	°C

Description/ Features

The 10MQ100N surface mount Schottky rectifier has been designed for applications requiring low forward drop and very small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

www.irf.com

10MQ100N

Bulletin PD-20520 rev. L 11/03

International **ICR** Rectifier

Voltage Ratings

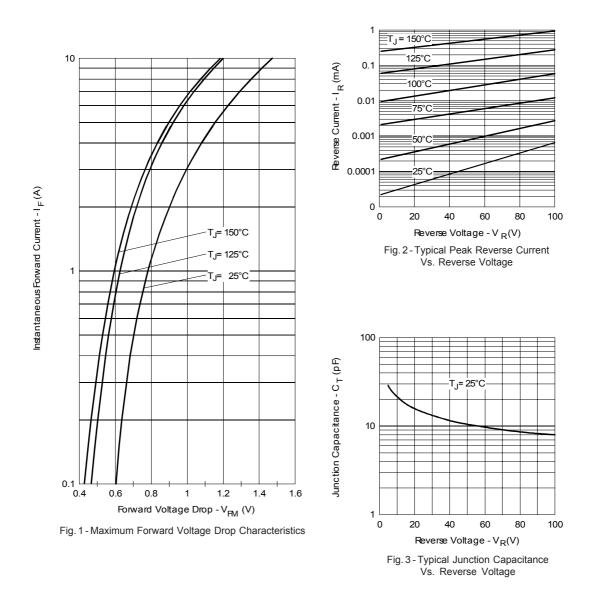
	Part number	10MQ100N	
V _R	Max. DC Reverse Voltage (V)	- 100	
V _{RWI}	Max. Working Peak Reverse Voltage (V)		

Absolute Maximum Ratings

	Parameters	10MQ	Units	Conditions		
I _{F(AV)}	Max. Average Forward Current *See Fig. 4	1.5	A	50% duty cycle @ T_L = 126 °C, rectangular wave form. On PC board 9mm ² island (.013mm thick copper pad area)		
I _{FSM}	Max. Peak One Cycle Non-Repetitive			5µs Sine or 3µs Rect. pulse	Following any rated load condition and with rated V _{RRM} applied	
	Surge Current * See Fig. 6, T_J = 25°C			10ms Sine or 6ms Rect. pulse		
E _{AS}	Non-Repetitive Avalanche Energy	1.0	mJ	T _J =25°C, I _{AS} =0.5A, L=8mH		
I _{AR}	Repetitive Avalanche Current	0.5	А			

Electrical Specifications

	Parameters	10MQ	Units		Conditions
V _{FM}	Max. Forward Voltage Drop (1)	0.78	V	@ 1A	T = 25 °C
	* See Fig. 1	0.85	V	@ 1.5A	1 _J = 23 C
		0.63	V	@ 1A	T , = 125 °C
		0.68	V	@ 1.5A	1 ₁ = 125 C
IRM	Max. Reverse Leakage Current (1)	0.1	mA	T _J = 25 °C	V = rated V
	* See Fig. 2		mA	T _J = 125 °C	V_R = rated V_R
V _{F(TO}	Threshold Voltage	0.52	V	$T_j = T_j max.$	
r,	Forward Slope Resistance	78.4	mΩ		
C _T	Typical Junction Capacitance	38	pF	$V_R = 10V_{DC}, T_J = 25^{\circ}C$, test signal = 1Mhz	
Ls	Typical Series Inductance	2.0	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	10000	V/µs		
	(Rated V _R)				


(1) Pulse Width < 300µs, Duty Cycle < 2%

Thermal-Mechanical Specifications

	Parameters		Units	Conditions
TJ	Max. Junction Temperature Range (*)	- 55 to 150	°C	
T _{stg}	Max. Storage Temperature Range	- 55 to 150	°C	
R _{thJA}	Max. Thermal Resistance Junction	80 °C/\		DC operation
	to Ambient			
wt	Approximate Weight	0.07(0.002) g(oz.)		
	Case Style	SMA		Similar D-64
	Device Marking	IR1J		

(*) dPtot

1 < Rth(j-a) thermal runaway condition for a diode on its own heatsink dTj

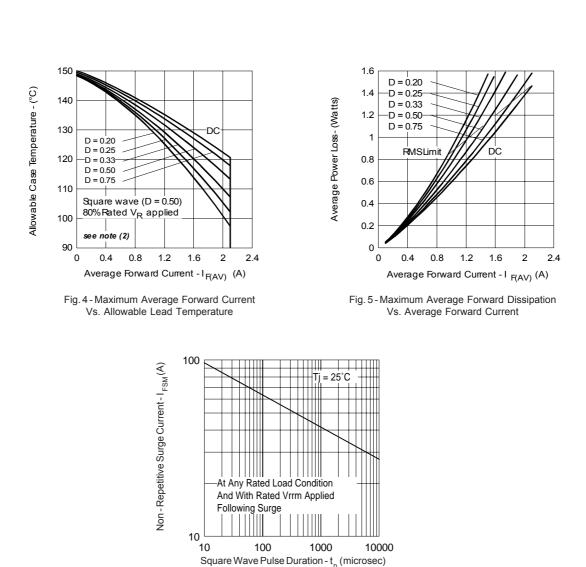
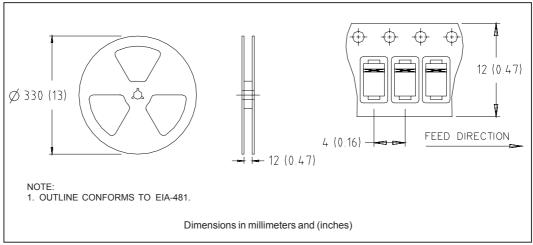


Fig. 6 - Maximum Peak Surge Forward Current Vs. Pulse Duration

```
(2) Formula used: T_c = T_J - (Pd + Pd_{REV}) \times R_{thJC};

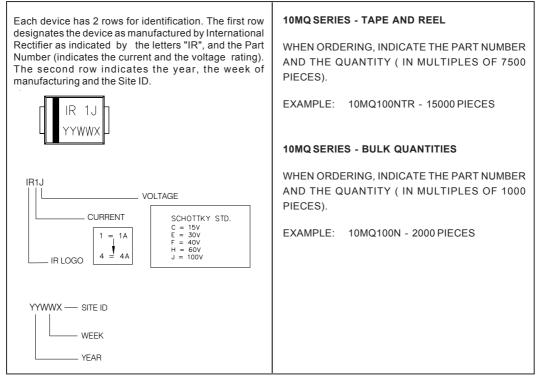
Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)}/D) (see Fig. 6);


Pd_{REV} = Inverse Power Loss = V_{R1} \times I_R (1-D); I_R @ V_{R1} = 80\% rated V_R
```

International

ICR Rectifier

10MQ100N


Bulletin PD-20520 rev. L 11/03

Tape & Reel Information

Marking & Identification

Ordering Information

www.irf.com

10MQ	100N			International
			11/02	tor Rectifier
Bulletin	PD-20520	rev. L	11/03	

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 11/03

www.irf.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.