

January 1993 Revised August 2000

SCAN182541A Non-Inverting Line Driver with 25 Ω Series Resistor Outputs

General Description

The SCAN182541A is a high performance BiCMOS line driver featuring separate data inputs organized into dual 9-bit bytes with byte-oriented paired output enable control signals. This device is compliant with IEEE 1149.1 Standard Test Access Port and Boundary-Scan architecture with the incorporation of the defined Boundary-Scan test logic and test access port consisting of Test Data Input (TDI), Test Data Out (TDO), Test Mode Select (TMS), and Test Clock (TCK).

Features

- IEEE 1149.1 (JTAG) Compliant
- High performance BiCMOS technology
- \blacksquare 25 Ω series resistor outputs eliminate need for external terminating resistors
- Dual output enable signals per byte
- 3-STATE outputs for bus-oriented applications
- 25 mil pitch SSOP (Shrink Small Outline Package)
- Includes CLAMP, IDCODE and HIGHZ instructions
- Additional instructions SAMPLE-IN, SAMPLE-OUT and EXTEST-OUT
- Power up 3-STATE for hot insert
- Member of Fairchild's SCAN Products

Ordering Code:

Order Number	Package Number	Package Description
SCAN182541ASSC	MS56A	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

		· /		1
TMS -	1	\cup	56	— TDI
AO ₀ -	2		55	— AI ₀
AOE ₁	3		54	—Ā0Ē₂
A0,-	4		53	— AI ₁
A02 -	5		52	— AI ₂
GND —	6		51	— GND
A03 -	7		50	— Al3
A04 -	8		49	- AI4
v _{cc} —	9		48	−v _{cc}
A05-	10		47	— AI5
A0 ₆ -	11		46	— AI6
GND —	12		45	— GND
A07 -	13		44	— Al ₇
A08 -	14		43	— AI8
BO ₀ —	15		42	—вI ₀
во, —	16		41	—ві ₁
GND -	17		40	— GND
BO ₂ —	18		39	— ві ₂
во ₃ —	19		38	—ві _з
v _{cc} —	20		37	-v _{cc}
BO ₄ —	21		36	—BI₄
BO ₅ —	22		35	—ві ₅
GND -	23		34	— GND
во ₆ —	24		33	— ві ₆
BO ₇ —	25		32	—ві ₇
BOE ₁	26		31	—BOE ₂
во _в —	27		30	—ві ₈
TDO —	28		29	— тск

Pin Descriptions

Pin Names	Description
AI ₍₀₋₈₎	Input Pins, A Side
BI ₍₀₋₈₎	Input Pins, B Side
AOE ₁ ,	3-STATE Output Enable Input Pins, A Side
BOE ₁ , BOE ₂	3-STATE Output Enable Input Pins, B Side
AO ₍₀₋₈₎	Output Pins, A Side
BO ₍₀₋₈₎	Output Pins, B Side

Truth Tables

	40		
†AOE₁	†AOE₂	AI ₍₀₋₈₎	AO ₍₀₋₈₎
L	L	Н	Н
Н	X	X	Z
X	Н	X	Z
L	L	L	L

			i L
H = HIGH Voltage L	_evel		Z = Hi
L = LOW Voltage Le	evel		† = Ina

L Z = High Impedance

†BOE₁

L

Н

Χ

Inputs

†BOE₂

L

Χ

Н

ı

BI₍₀₋₈₎

Н

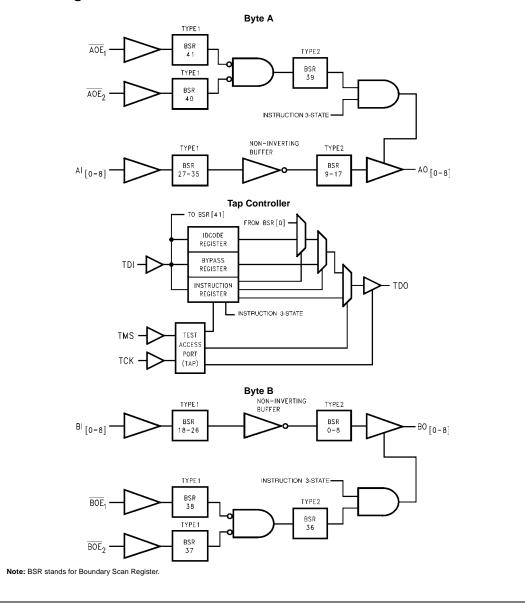
Χ

Χ

L

BO₍₀₋₈₎

Н


Ζ

Ζ

L

Block Diagrams

X = Immaterial

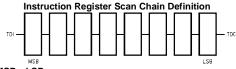
 $[\]dagger = \mbox{Inactive-to-active transition}$ must occur to enable outputs upon power-up.

Description of BOUNDARY-SCAN Circuitry

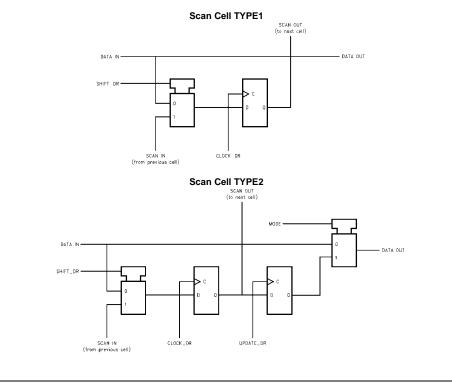
The scan cells used in the BOUNDARY-SCAN register are one of the following two types depending upon their location. Scan cell TYPE1 is intended to solely observe system data, while TYPE2 has the additional ability to control system data.

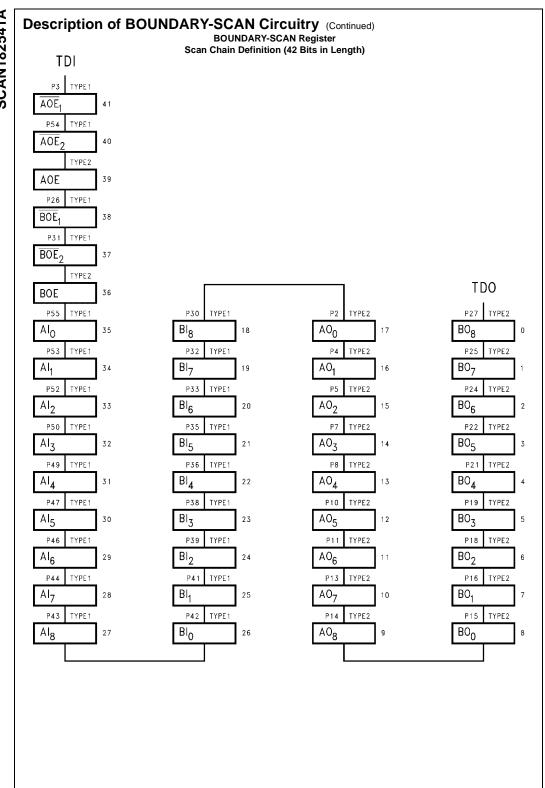
Scan cell TYPE1 is located on each system input pin while scan cell TYPE2 is located at each system output pin as well as at each of the two internal active-high output enable signals. AOE controls the activity of the A-outputs while BOE controls the activity of the B-outputs. Each will activate their respective outputs by loading a logic high.

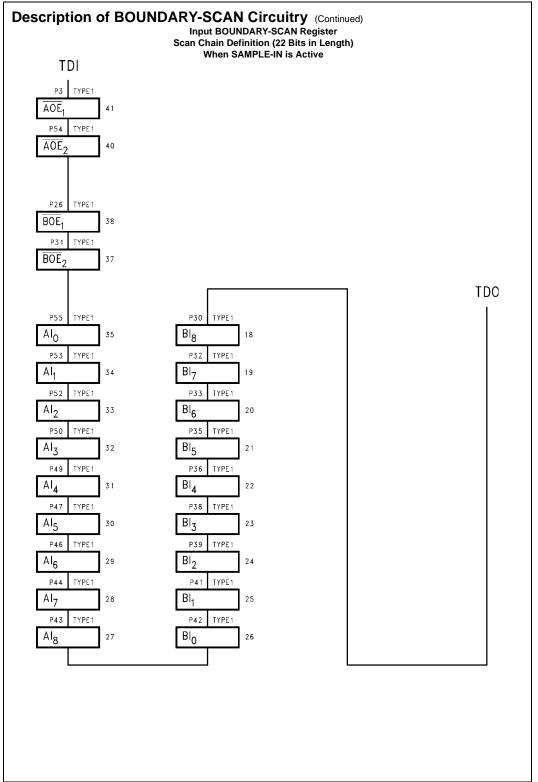
The BYPASS register is a single bit shift register stage identical to scan cell TYPE1. It captures a fixed logic low.

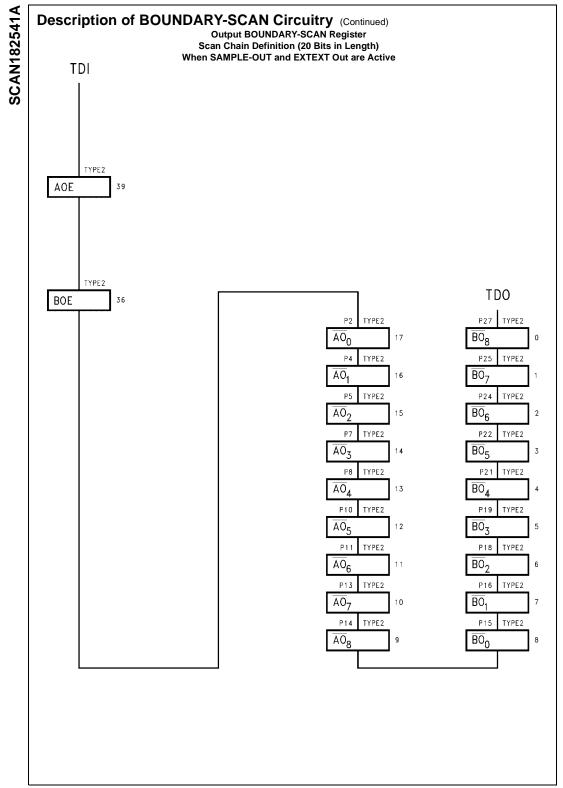

Bypass Register Scan Chain Definition

SCAN182541A Product IDCODE (32-Bit Code per IEEE 1149.1)


Version	Entity	Part	Manufacture r	Required b y
		Number	ID	1149.1
0000	111111	000000100	00000001111	1
MSB				LSB


The INSTRUCTION register is an 8-bit register which captures the default value of 10000001 (SAMPLE/PRELOAD) during the CAPTURE-IR instruction command. The benefit of capturing SAMPLE/PRELOAD as the default instruction during CAPTURE-IR is that the user is no longer required to shift in the 8-bit instruction for SAMPLE/PRELOAD. The sequence of: CAPTURE-IR→EXIT1-IR→ UPDATE-IR will update the SAMPLE/PRELOAD instruction. For more information refer to the section on instruction definitions.




 $MSB \rightarrow LSB$

Instruction Code	Instruction
00000000	EXTEST
10000001	SAMPLE/PRELOAD
10000010	CLAMP
00000011	HIGH-Z
01000001	SAMPLE-IN
01000010	SAMPLE-OUT
00100010	EXTEST-OUT
10101010	IDCODE
11111111	BYPASS
All Others	BYPASS

Description of BOUNDARY-SCAN Circuitry (Continued) BOUNDARY-SCAN Register Definition Index

Bit No.	Pin Name	Pin No.	Pin Type	Scan Cell Type	
41	AOE ₁	3	Input	TYPE1	
40	AOE ₂	54	Input	TYPE1	
39	AOE		Internal	TYPE2	Control
38	BOE ₁	26	Input	TYPE1	Signals
37	BOE ₂	31	Input	TYPE1	
36	BOE		Internal	TYPE2	
35	AI ₀	55	Input	TYPE1	
34	AI ₁	53	Input	TYPE1	
33	Al ₂	52	Input	TYPE1	
32	Al ₃	50	Input	TYPE1	
31	Al ₄	49	Input	TYPE1	A–in
30	Al ₅	47	Input	TYPE1	
29	AI ₆	46	Input	TYPE1	
28	Al ₇	44	Input	TYPE1	
27	Al ₈	43	Input	TYPE1	
26	BI ₀	42	Input	TYPE1	
25	BI ₁	41	Input	TYPE1	
24	BI ₂	39	Input	TYPE1	
23	BI ₃	38	Input	TYPE1	
22	BI ₄	36	Input	TYPE1	B–in
21	BI ₅	35	Input	TYPE1	
20	BI ₆	33	Input	TYPE1	
19	BI ₇	32	Input	TYPE1	
18	BI ₈	30	Input	TYPE1	
17	AO ₀	2	Output	TYPE2	
16	AO ₁	4	Output	TYPE2	
15	AO ₂	5	Output	TYPE2	
14	AO ₃	7	Output	TYPE2	
13	AO ₄	8	Output	TYPE2	A-out
12	AO ₅	10	Output	TYPE2	
11	AO ₆	11	Output	TYPE2	
10	AO ₇	13	Output	TYPE2	
9	AO ₈	14	Output	TYPE2	
8	BO ₀	15	Output	TYPE2	
7	BO ₁	16	Output	TYPE2	
6	BO ₂	18	Output	TYPE2	
5	BO ₃	19	Output	TYPE2	
4	BO ₄	21	Output	TYPE2	B-out
3	BO ₅	22	Output	TYPE2	
2	BO ₆	24	Output	TYPE2	
1	BO ₇	25	Output	TYPE2	
0	BO ₈	27	Output	TYPE2	

Absolute Maximum Ratings(Note 1)

Voltage Applied to Any Output

% in Disabled or Power-Off State $$-0.5$\rm V to +5.5$\rm V_{CC}$$ in the HIGH State $$-0.5$\rm V to V_{CC}$$

Current Applied to Output

DC Latchup Source Current -500 mA
Over Voltage Latchup (I/O) 10V

EDS (HBM) Min. 2000V

Recommended Operating Conditions

Note 1: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Paramete	er	v_{cc}	Min	Тур	Max	Units	Conditions
V _{IH}	Input HIGH Voltage			2.0			V	Recognized HIGH Signal
V _{IL}	Input LOW Voltage					0.8	V	Recognized LOW Signal
V _{CD}	Input Clamp Diode Voltage	ge	Min			-1.2	V	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage		Min	2.5			V	$I_{OH} = -3 \text{ mA}$
		•	Min	2.0			V	I _{OH} = -32 mA
V _{OL}	Output LOW Voltage		Min			0.8	V	I _{OL} = 15 mA
I _{IH}	Input HIGH Current	All Oth	Max			5	μА	V _{IN} = 2.7V (Note 3)
		All Others	Max			5	μА	$V_{IN} = V_{CC}$
		TMS, TDI	Max			5	μА	$V_{IN} = V_{CC}$
I _{BVI}	Input HIGH Current Brea	kdown Test	Max			7	μА	V _{IN} = 7.0V
I _{BVIT}	Input HIGH Current Brea	kdown Test (I/O)	Max			100	μА	V _{IN} = 5.5V
I _{IL}	Input LOW Current	A II O II	Max			-5	μА	V _{IN} = 0.5V (Note 3)
		All Others	Max			-5	μА	V _{IN} = 0.0V
		TMS, TDI	Max			-385	μА	V _{IN} = 0.0V
V _{ID}	Input Leakage Test		0.0	4.75			V	$I_{ID} = 1.9 \mu A$
								All Other Pins Grounded
I _{IH} + I _{OZH}	Output Leakage Current		Max			50	μА	V _{OUT} = 2.7V
I _{IL} + L _{OZL}	Output Leakage Current		Max			-50	μА	V _{OUT} = 0.5V
I _{OZH}	Output Leakage Current		Max			50	μА	V _{OUT} = 2.7V
I _{OZL}	Output Leakage Current		Max			-50	μА	V _{OUT} = 0.5V
I _{OS}	Output Short-Circuit Current		Max	-100		-275	mA	V _{OUT} = 0.0V
I _{CEX}	Output HIGH Leakage Current		Max			50	μА	V _{OUT} = V _{CC}
I _{ZZ}	Bus Drainage Test		0.0			100	μА	V _{OUT} = 5.5V
								All Others Grounded

DC Electrical Characteristics (Continued)

Symbol	Paramo	eter	v_{cc}	Min	Тур	Max	Units	Conditions
I _{CCH}	Power Supply Current		Max			250	μΑ	$V_{OUT} = V_{CC}$; TDI, TMS = V_{CC}
			Max			1.0	mA	$V_{OUT} = V_{CC}$; TDI, TMS = GND
I _{CCL}	Power Supply Current		Max			65	mA	$V_{OUT} = LOW; TDI, TMS = V_{CC}$
			Max			65.8	mA	$V_{OUT} = LOW; TDI, TMS = GND$
I _{CCZ}	Power Supply Current		Max			250	μΑ	TDI, TMS = V _{CC}
			Max			1.0	mA	TDI, TMS = GND
I _{CCT}	Additional I _{CC} /Input	All Other Inputs	Max			2.9	mA	$V_{IN} = V_{CC} - 2.1V$
		TDI, TMS Inputs	Max			3	mA	$V_{\text{IN}} = V_{\text{CC}} - 2.1V$
I _{CCD}	Dynamic I _{CC}	No Load	Max			0.2	mA/	Outputs Open
							MHz	One Bit Toggling, 50% Duty Cycle

Note 3: Guaranteed not tested.

AC Electrical Characteristics

Normal Operation:

		V _{CC}	T_A	Units		
Symbol	Parameter	(V)	C _L = 50 pF			
		(Note 4)	Min	Тур	Max	
t _{PLH}	Propagation Delay	5.0	1.0	3.4	5.2	
t _{PHL}	Data to Q		1.9	4.1	6.5	ns
t _{PLZ}	Disable Time	5.0	2.0	5.2	8.7	
t _{PHZ}			1.9	5.6	9.2	ns
t _{PZL}	Enable Time	5.0	2.4	6.1	9.6	
t _{PZH}			1.6	5.1	8.5	ns
t _{PLH}	Propagation Delay	5.0	3.2	6.0	9.4	
t _{PHL}	TCK to TDO		4.5	7.6	11.3	ns
t _{PLZ}	Disable Time	5.0	2.5	5.8	9.9	
t _{PHZ}	TCK to TDO		3.7	7.4	11.8	ns
t _{PZL}	Enable Time	5.0	4.9	8.6	12.9	
t _{PZH}	TCK to TDO		3.1	6.7	10.7	ns
t _{PLH}	Propagation Delay		3.7	6.7	10.3	
t _{PHL}	TCK to Data Out during Update-DR State	5.0	4.9	8.3	12.4	ns
t _{PLH}	Propagation Delay		4.2	7.9	12.2	
t _{PHL}	TCK to Data Out during Update-IR State	5.0	5.3	9.2	13.8	ns
t _{PLH}	Propagation Delay		5.0	9.4	14.6	
t _{PHL}	TCK to Data Out during Test Logic Reset State	5.0	6.2	10.9	16.4	ns
t _{PLZ}	Disable Time		3.7	7.9	13.0	
t _{PHZ}	TCK to Data Out during Update-DR State	5.0	4.3	8.7	13.7	ns
t _{PLZ}	Disable Time		3.7	8.5	14.2	
t_{PHZ}	TCK to Data Out during Update-IR State	5.0	4.3	9.4	14.8	ns
t _{PLZ}	Disable Time		4.7	10.1	16.6	
t _{PHZ}	TCK to Data Out during Test Logic Reset State	5.0	5.5	10.9	17.3	ns
t _{PZL}	Enable Time		5.5	9.8	14.7	
t _{PZH}	TCK to Data Out during Update-DR State	5.0	4.0	7.9	12.5	ns
t _{PZL}	Enable Time		5.8	10.9	16.5	
t _{PZH}	TCK to Data Out during Update-IR State	5.0	4.3	9.0	14.4	ns
t _{PZL}	Enable Time		6.6	12.5	19.1	
t _{PZH}	TCK to Data Out during Test Logic Reset State	5.0	4.9	10.5	16.9	ns

AC Operating Requirements

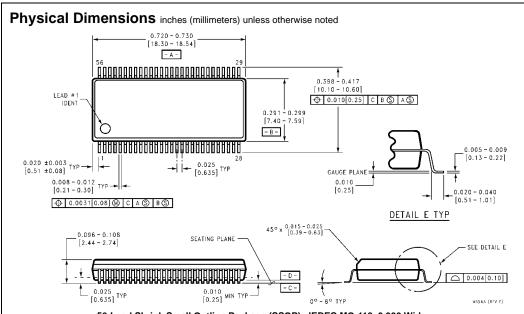
Scan Test Operation:

Symbol	Parameter	V _{CC} (V) (Note 5)	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $C_L = 50 \text{ pF}$ Guaranteed Minimum	Units
t _S	Setup Time Data to TCK (Note 6)	5.0	2.2	ns
t _H	Hold Time Data to TCK (Note 6)	5.0	1.8	ns
t _S	Setup Time, H or L AOE _n , BOE _n to TCK (Note 7)	5.0	3.7	ns
t _H	Hold Time, H or L TCK to \overline{AOE}_n , \overline{BOE}_n (Note 7)	5.0	1.8	ns
t _S	Setup Time, H or L Internal AOE _n , BOE _n , to TCK (Note 8)	5.0	2.7	ns
t _H	Hold Time, H or L TCK to Internal AOE _n , BOE _n (Note 8)	5.0	1.8	ns
t _S	Setup Time, H or L TMS to TCK	5.0	7.5	ns
t _H	Hold Time, H or L TCK to TMS	5.0	1.8	ns
t _S	Setup Time, H or L TDI to TCK	5.0	5.0	ns
t _H	Hold Time, H or L TCK to TDI	5.0	2.0	ns
t _W	Pulse Width TCK H	5.0	10.0 10.8	ns
f _{MAX}	Maximum TCK Clock Frequency	5.0	50	MHz
t _{PU}	Wait Time, Power Up to TCK	5.0	100	ns
t_{DN}	Power Down Delay	0.0	100	ms

Note 5: Voltage Range $5.0V \pm 0.5V$

Note 6: This delay represents the timing relationship between the data input and TCK at the associated scan cells numbered 0-8, 9-17, 18-26 and 27-35.

Note 7: Timing pertains to BSR 38 and 41 or BSR 37 and 40.


Note 8: This delay represents the timing relationship between AOE/BOE and TCK for scan cells 36 and 39 only.

Note: All Input Timing Delays involving TCK are measured from the rising edge of TCK.

Capacitance

Symbol	Parameter	Тур	Units	Conditions, T _A = 25°C
C _{IN}	Input Capacitance	5.8	pF	V _{CC} = 0.0V
C _{OUT}	Output Capacitance (Note 9)	13.8	pF	V _{CC} = 5.0V

Note 9: C_{OUT} is measured at frequency f = 1 MHz, per MIL-STD-883B, Method 3012.

56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300 Wide Package Number MS56A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com