

RoHS Sxx12x Series

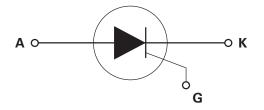
Description

Excellent unidirectional switches for phase control applications such as heating and motor speed controls.

Standard phase control SCRs are triggered with few milliamperes of current at less than 1.5V potential.

Features & Benefits

- RoHS compliant
- Glass passivated junctions
- Voltage capability up to 1000 V
- Surge capability up to 120 A


Main Features

Symbol	Value	Unit
I _{T(RMS)}	12	А
V_{DRM}/V_{RRM}	400 to 1000	V
I _{GT}	20	mA

Applications

Typical applications are capacitive discharge systems for strobe lights, nailers, staplers and gas engine ignition. Also controls for power tools, home/brown goods and white goods appliances.

Schematic Symbol

Absolute Maximum Ratings

Symbol	Parameter	Test Con	ditions	Value	Unit		
I _{T(RMS)}	RMS on-state current	Sxx12R Sxx12D		Sxx12D $T_c = 105$ °C		12	А
	Peak non-repetitive surge current	single half cyc T _J (initial)		100	А		
^I TSM	TSM FEAR HOH-TEPETHIVE Surge Current		single half cycle; $f = 60Hz$; T_J (initial) = 25°C		A		
l²t	I²t Value for fusing	t _p = 8.3 ms		60	A ² s		
di/dt	Critical rate of rise of on-state current	f = 60Hz; T _J = 125°C		100	A/µs		
I _{GM}	Peak gate current	T _J = 125°C		2	А		
P _{G(AV)}	Average gate power dissipation	$T_J = 12$	25°C	0.5	W		
T _{stg}	Storage temperature range	-40 to 150	°C				
T _J	Operating junction temperature range			-40 to 125	C		

Note: xx = voltage

Teccor® brand Thyristors 12 Amp Standard SCRs

Electrical Characteristics (T_J = 25°C, unless otherwise specified)

Symbol	Test Conditions	Value	Unit		
I _{GT}			MAX.	20	mA
\/	$V_D = 12V R_L = 60 \Omega$		MIN.	1	IIIA
$V_{\rm GT}$			MAX.	1.5	V
		400V		350	
	// // . goto open T 100°C	600V		300	
	$V_D = V_{DRM}$; gate open; $T_J = 100$ °C	800V		250	
dv/dt		1000V	MIN.	100	V/µs
		400V		250	
	$V_D = V_{DRM}$; gate open; $T_J = 125^{\circ}C$	600V		225	
		800V		200	
V_{GD}	$V_D = V_{DRM} R_L = 3.3 \text{ k}\Omega T_J = 125^{\circ}\text{C}$		MIN.	0.2	V
I _H	$I_{T} = 200 \text{mA} \text{ (initial)}$		MAX.	40	mA
t _q	$I_{_{\rm T}}$ = 2A; $t_{_{\rm p}}$ = 50 μ s; dv/dt = 5V/ μ s; di/dt = 30A/ μ s		MAX.	35	μs
t _{gt}	$I_G = 2 \times I_{GT} \text{ PW} = 15 \mu \text{s} I_T = 20 \text{A}$		TYP.	2	μs

Static Characteristics

Symbol		Test Co	Value	Unit		
V _{TM}		$I_{_{\rm T}} = 24A; \ t_{_{\rm p}} = 380 \ \mu s$	3	MAX.	1.6	V
		T, = 25°C	400 – 600V		10	
		I _J = 25 C	800 – 1000V		20	
I _{DRM} / I _{RRM}	$V_{DRM} = V_{RRM}$	T 1000C	400 – 800V	MAX.	500	μΑ
		$T_{J} = 100^{\circ}C$	1000V		3000	
		T _J = 125°C	400 – 800V		1000	

Thermal Resistances

Symbol	Parar	neter	Value	Unit
		Sxx12R	1.5	
$R_{\theta(J-C)}$	Junction to case (AC)	Sxx12V	1.6	°C/W
		Sxx12D	1.4	
	lunction to continue	Sxx12R	40	0000
$R_{\theta(J-A)}$	Junction to ambient	Sxx12V	70	°C/W

Note: xx = voltage

Figure 1: Normalized DC Gate Trigger Current vs. Junction Temperature

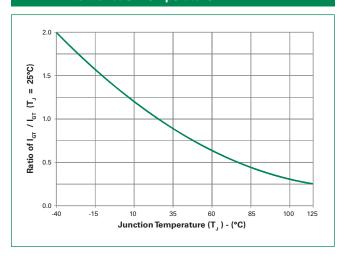


Figure 2: Normalized DC Gate Trigger Voltage vs. Junction Temperature

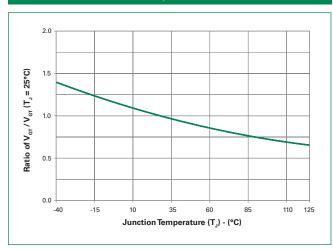


Figure 3: Normalized DC Holding Current vs. Junction Temperature



Figure 4: On-State Current vs. On-State Voltage (Typical)

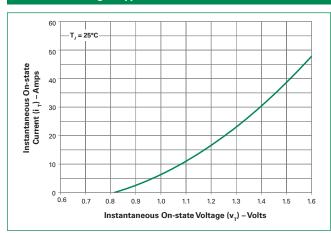


Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

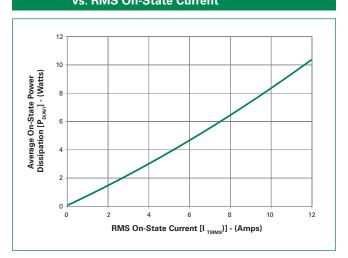


Figure 6: Maximum Allowable Case Temperature vs. RMS On-State Current

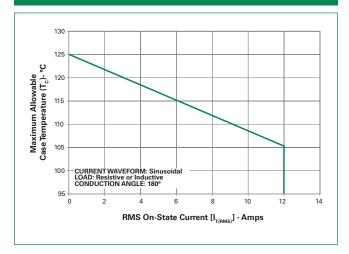


Figure 7: Maximum Allowable Case Temperature vs. Average On-State Current

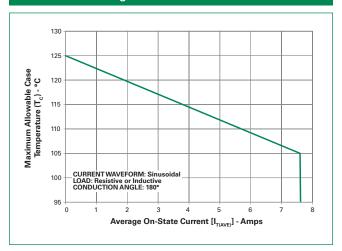


Figure 8: Maximum Allowable Ambient Temperature vs. RMS On-State Current

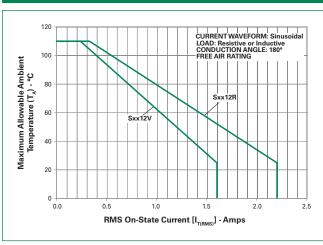
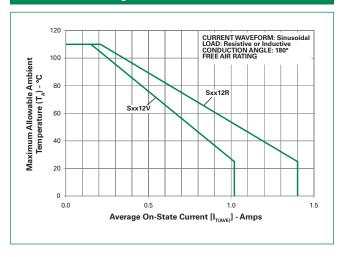



Figure 9: Maximum Allowable Ambient Temperature vs. Average On-State Current

Note: xx = voltage

Figure 10: Peak Capacitor Discharge Current

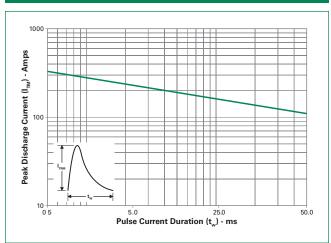
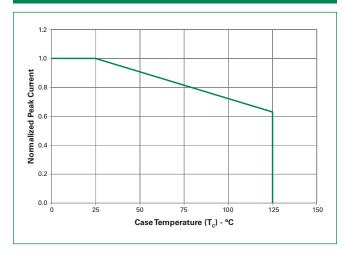
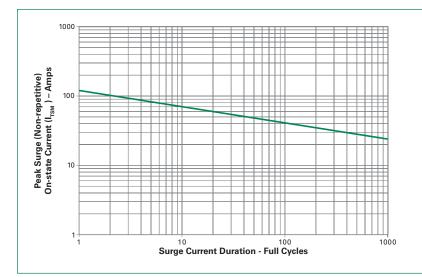
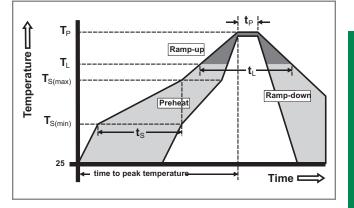




Figure 11: Peak Capacitor Discharge Current Derating

Figure 12: Surge Peak On-State Current vs. Number of Cycles

SUPPLY FREQUENCY: 60 Hz Sinusoidal LOAD: Resistive


RMS On-State Current: [I_{T(RMS)}]: Maximum Rated Value at Specified Case Temperature

Notes

- 1. Gate control may be lost during and immediately following surge current interval.
- Overload may not be repeated until junction temperature has returned to steady-state rated value.

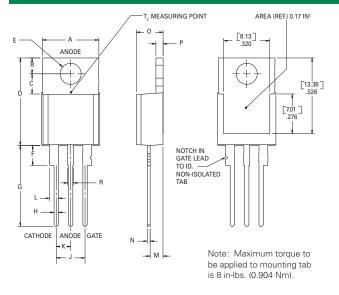
Soldering Parameters

Reflow Co	ndition	Pb – Free assembly
	-Temperature Min (T _{s(min)})	150°C
Pre Heat	-Temperature Max (T _{s(max)})	200°C
	-Time (min to max) (t _s)	60 – 190 secs
Average ra	amp up rate (LiquidusTemp) k	5°C/second max
T _{S(max)} to T _L - Ramp-up Rate		5°C/second max
Reflow	-Temperature (T _L) (Liquidus)	217°C
nellow	-Temperature (t _L)	60 – 150 seconds
PeakTemp	erature (T _P)	260+0/-5 °C
Time within 5°C of actual peak Temperature (t _p)		20 - 40 seconds
Ramp-down Rate		5°C/second max
Time 25°C to peakTemperature (T _P)		8 minutes Max.
Do not exc	ceed	280°C

Teccor® brand Thyristors 12 Amp Standard SCRs

Physical Specifications

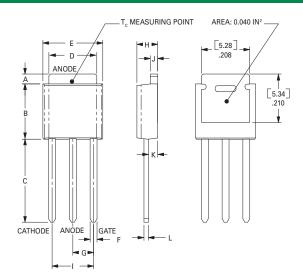
Terminal Finish	100% Matte Tin-plated	
Body Material	UL recognized epoxy meeting flammability classification 94V-0	
Lead Material	Copper Alloy	


Design Considerations

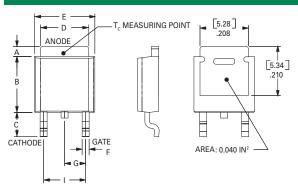
Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Environmental Specifications

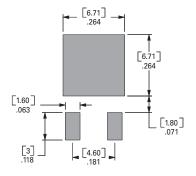
Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Thermal Shock	MIL-STD-750, M-1056 10 cycles; 0°C to 100°C; 5-min dwell- time at each temperature; 10 sec (max) transfer time between temperature
Autoclave	EIA / JEDEC, JESD22-A102 168 hours (121°C at 2 ATMs) and 100% R/H
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E

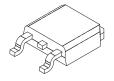

Dimensions — TO-220AB (R-Package) — Non-Isolated Mounting Tab Common with Center Lead

Dimension	Inc	hes	Millin	neters
Difficusion	Min	Max	Min	Max
А	0.380	0.420	9.65	10.67
В	0.105	0.115	2.67	2.92
С	0.230	0.250	5.84	6.35
D	0.590	0.620	14.99	15.75
Е	0.142	0.147	3.61	3.73
F	F 0.110 0		2.79	3.30
G	G 0.540 0.575		13.72	14.61
Н	H 0.025 0.035		0.64	0.89
J	0.195	0.205	4.95	5.21
K	0.095	0.105	2.41	2.67
L	0.060	0.075	1.52	1.91
М	0.085	0.095	2.16	2.41
N	0.018	0.024	0.46	0.61
0	0.178	0.188	4.52	4.78
Р	0.045	0.060	1.14	1.52
R	0.038	0.048	0.97	1.22

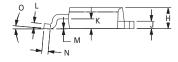


Dimensions — TO-251AA (V/I-Package) — V/I-PAK Through Hole




Dimension	Inc	hes	Millin	neters
Dimension	Min	Min Max		Max
А	0.040	0.050	1.02	1.27
В	0.235	0.245	5.97	6.22
С	0.350	0.375	8.89	9.53
D	0.205	0.213	5.21	5.41
Е	0.255	0.265	6.48	6.73
F	0.027	0.033	0.69	0.84
G	0.087	0.093	2.21	2.36
Н	0.085	0.095	2.16	2.41
1	0.176	0.184	4.47	4.67
J	0.018	0.023	0.46	0.58
K	0.038	0.044	0.97	1.12
L	0.018	0.023	0.46	0.58

Dimensions - TO-252AA (D-Package) - D-PAK Surface Mount



Pad Layout for TO-252AA (D-Package)

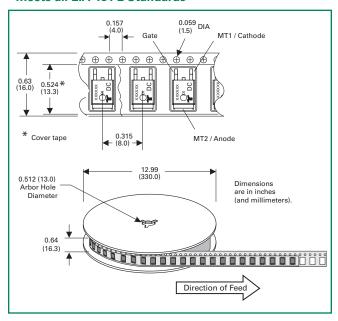
Dimension	Inches		Millimeters		
Dimension	Min	Max	Min	Max	
А	0.040	0.050	1.02	1.27	
В	0.235	0.245	5.97	6.22	
С	0.106	0.113	2.69	2.87	
D	0.205	0.213	5.21	5.41	
Е	0.255	0.265	6.48	6.73	
F	0.027	0.033	0.69	0.84	
G	0.087	0.093	2.21	2.36	
Н	0.085	0.095	2.16	2.41	
1	0.176	0.184	4.47	4.67	
J	0.018	0.023	0.46	0.58	
K	0.038	0.044	0.97	1.12	
L	0.018	0.023	0.46	0.58	
М	0.000	0.004	0.00	0.10	
N	0.021	0.027	0.53	0.69	
0	0°	5°	0°	5°	

Teccor® brand Thyristors 12 Amp Standard SCRs

Product Selector

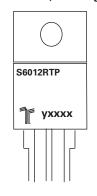
Part Number	Voltage				Gate Sensitivity	Tuno	Package
rait Nullibei	400V	600V	800V	1000V	Gate Sensitivity	Туре	гаскауе
Sxx12R	X	X	X	X	20mA	Sensitive SCR	TO-220R
Sxx12V	X	X	X	X	20mA	Standard SCR	TO-251
Sxx12D	X	X	X	X	20mA	Standard SCR	TO-252

Note: xx = voltage

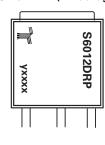

Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
Sxx12R	Sxx12R	2.2 g	Bulk	500
Sxx12RTP	Sxx12R	2.2 g	Tube	500
Sxx12DTP	Sxx12D	0.3 g	Tube	750
Sxx12DRP	Sxx12D	0.3 g	Embossed Carrier	2500
Sxx12VTP	Sxx12V	0.4 g	Tube	750

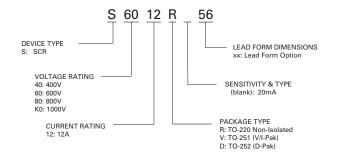
Note: xx = Voltage


TO-252 Embossed Carrier Reel Pack (RP) Specifications

Meets all EIA-481-2 Standards



Part Marking System


TO-220AB (R Package)

TO-251AA - (V Package) TO-252AA - (D Package)

Part Numbering System

