PA15FL•PA15FLA

High Voltage Power Operational Amplifiers
 POHS

DESCRIPTION

The PA15FL is a high voltage, low quiescent current MOSFET operational amplifier designed as a low cost solution for driving continuous output currents up to 200mA and pulse currents up to 350 mA into capacitive loads. The safe operating area (SOA) has no second breakdown limitations and can be observed for all type loads by choosing an appropriate current limiting resistor. The MOSFET input stage has integrated static and differential mode protection. The MOSFET output stage is biased AB for linear operation. External compensation provides flexibility in choosing bandwidth and slew rate for the application. The 10-pin power SIP package is electrically isolated.

EQUIVALENT SCHEMATIC

1. CHARACTERISTICS AND SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Units
SUPPLY VOLTAGE, $+\mathrm{V}_{\mathrm{s}}$ to $-\mathrm{V}_{\mathrm{s}}$			450	V
OUTPUT CURRENT, source, sink		See SOA		
POWER DISSIPATION, internal at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			30	W
INPUT VOLTAGE, differential		-25	25	V
INPUT VOLTAGE, common mode		$-\mathrm{V}_{\mathrm{s}}$	$+\mathrm{V}_{\mathrm{s}}$	V
TEMPERATURE, pin solder-10s max.			260	${ }^{\circ} \mathrm{C}$
TEMPERATURE, junction		150	${ }^{\circ} \mathrm{C}$	
TEMPERATURE RANGE, storage		-55	125	${ }^{\circ} \mathrm{C}$
OPERATING TEMPERATURE RANGE, case		-25	85	${ }^{\circ} \mathrm{C}$

SPECIFICATIONS

PARAMETER	TEST CONDITIONS (Note 1)	PB15FL			PB15FLA			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
INPUT								
OFFSET VOLTAGE, initial			2	10		0.5	3	mV
OFFSET VOLTAGE, vs. temperature	Full temperature range (Note 3)		15	50		5	20	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
OFFSET VOLTAGE, vs. supply			10	50		*	*	$\mu \mathrm{V} / \mathrm{V}$
OFFSET VOLTAGE, vs. time			75			*		$\mu \mathrm{V} / \sqrt{ } \mathrm{kh}$
BIAS CURRENT, initial			200	2000		*	*	pA
BIAS CURRENT, vs. supply			4			*		pA/V
OFFSET CURRENT, initial			50	500		30	200	pA
INPUT IMPEDANCE, DC			10^{11}			*		Ω
INPUT CAPACITANCE			4			*		pF
COMMON MODE VOLTAGE RANGE		$\pm \mathrm{V}_{\mathrm{s}}-15$			*			V
COMMON MODE REJECTION, DC	$\mathrm{V}_{\text {CM }}= \pm 90 \mathrm{~V}$	80	98		*	*		dB
NOISE	$\begin{aligned} & 10 \mathrm{KHz} \mathrm{BW}, \mathrm{R}_{\mathrm{s}}=1 \mathrm{~K} \Omega, \\ & \mathrm{C}_{\mathrm{C}}=\text { OPEN } \end{aligned}$		2			*		$\mu \mathrm{V}$ rms
GAIN								
OPEN LOOP, @ 15Hz	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{C}}=$ OPEN	94	111		*	*		dB
GAIN BANDWIDTH PRODUCT at 1 MHz	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{C}}=$ OPEN		5.8			*		MHz
POWER BANDWIDTH	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{C}}=$ OPEN		24			*		kHz
PHASE MARGIN	Full temperature range		60			*		。

PARAMETER	TEST CONDITIONS (Note 1)	PB15FL			PB15FLA			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
OUTPUT								
VOLTAGE SWING (Note 4)	$\mathrm{I}_{0}= \pm 200 \mathrm{~mA}$	$\pm \mathrm{V}_{\mathrm{s}}$-15	$\pm \mathrm{V}_{\mathrm{s}}-10$		*	*		V
CURRENT, continuous		± 200			*			mA
SLEW RATE, A = 100	$\mathrm{C}_{\mathrm{c}}=$ OPEN		20		20	30		V/us
CAPACITIVE LOAD, A = +1	Full temperature range	100			*			pF
SETTLING TIME to . 1%	$\mathrm{C}_{\mathrm{c}}=$ OPEN, 2 V step		2			*		us
RESISTANCE, no load			50			*		Ω
POWER SUPPLY								
VOLTAGE (Note 5)		± 50	± 150	± 225	*	*	*	V
CURRENT, quiescent			2.0	3.0		*	*	mA
THERMAL								
RESISTANCE, AC junction to case \quad (Note 4)	Full temp. range, $\mathrm{f}>60 \mathrm{~Hz}$			2.5			*	${ }^{\circ} \mathrm{C} / \mathrm{W}$
RESISTANCE, DC junction to case	Full temp. range, $\mathrm{f}<60 \mathrm{~Hz}$			4.2			*	${ }^{\circ} \mathrm{C} / \mathrm{W}$
RESISTANCE, junction to air	Full temperature range		30			*		${ }^{\circ} \mathrm{C} / \mathrm{W}$
TEMPERATURE RANGE, case	Meets full range specifications	-25		85	*		*	${ }^{\circ} \mathrm{C}$

NOTES: * The specification of PA15FLA is identical to the specification for PA15FL in applicable column to the left.

1. Unless otherwise noted: $T_{C}=25^{\circ} \mathrm{C}$, compensation $=C_{C}=33 p F, R_{C}=1 \mathrm{~K} \Omega, R_{C L}=0$. $D C$ input specifications are \pm value given. Power supply voltage is typical rating.
2. Long term operation at the maximum junction temperature will result in reduced product life. Derate internal power dissipation to achieve high MTTF.
3. $+\mathrm{V}_{\mathrm{s}}$ and $-\mathrm{V}_{\mathrm{s}}$ denote the positive and negative power supply rail respectively.
4. Rating applies if the output current alternates between both output transistors at a rate faster than 60 Hz .
5. Derate max supply rating $.625 \mathrm{~V} /{ }^{\circ} \mathrm{C}$ below $25^{\circ} \mathrm{C}$ case. No derating needed above $25^{\circ} \mathrm{C}$ case.

CAUTION The PA15FL is constructed from MOSFET transistors. ESD handling procedures must be observed.
The exposed substrate contains beryllia (BeO). Do not crush, machine, or subject to temperatures in excess of $850^{\circ} \mathrm{C}$ to avoid generating toxic fumes.

10-pin SIP
PACKAGE STYLE FL
Formed leads available
See package style FU
2. TYPICAL PERFORMANCE GRAPHS

SMALL SIGNAL RESPONSE

QUIESCENT CURRENT

SMALL SIGNAL RESPONSE

PHASE RESPONSE

TYPICAL APPLICATION LOW POWER, PIEZOELECTRIC POSITIONING

Piezo positioning may be applied to the focusing of segmented mirror systems. The composite mirror may be composed of hundreds of elements, each requiring focusing under computer control. In such complex systems the PA15FL reduces the costs of power supplies and cooling with its advantages of low cost and low quiescent power consumption while increasing circuit density with the SIP package.

EXTERNAL CONNECTIONS

PHASE COMPENSATION

GAIN	C_{C}	R_{C}
≥ 1	33 pf	$1 \mathrm{~K} \Omega$
≥ 10	OPEN	OPEN
$\mathrm{R}_{\mathrm{CL}} \cong$	$\frac{.6}{\mathrm{I}_{\mathrm{CL}}}$	

GENERAL

Please read Application Note 1 "General Operating Considerations" which covers stability, supplies, heat sinking, mounting, current limit, SOA interpretation, and specification interpretation. Visit www.Cirrus.com for design tools that help automate tasks such as calculations for stability, internal power dissipation, current limit; heat sink selection; Apex Precision Power's complete Application Notes library; Technical Seminar Workbook; and Evaluation Kits.

CURRENT LIMIT

For proper operation, the current limit resistor $\left(\mathrm{R}_{\mathrm{CL}}\right)$ must be connected as shown in the external connection diagram. The minimum value is 2 ohm, however for optimum reliability the resistor value should be set as high as possible. The value is calculated as follows; with the maximum practical value of 150 ohms.

$$
\mathrm{R}_{\mathrm{CL}}=\frac{.6}{\mathrm{I}_{\mathrm{LM}}}
$$

SAFE OPERATING AREA (SOA)

The MOSFET output stage of this power operational amplifier has two distinct limitations:

1. The current handling capability of the MOSFET geometry and the wire bonds.
2. The junction temperature of the output MOSFETs.

INPUT PROTECTION

Although the PA15FL can withstand differential input voltages up to $\pm 25 \mathrm{~V}$, additional external protection is recommended. In most applications 1N4148 or 1N914 signal diodes are sufficient (D1-D4 in Figure 2a). In more demanding applications where low leakage or low capacitance are of concern 2N4416 or 2N5457-2N5459 JFETs connected as diodes will be required (Q1-Q4 in Figure 2b). In either case the input differential voltage will be clamped to $\pm 1.4 \mathrm{~V}$. This is sufficient overdrive to produce maximum power bandwidth.

POWER SUPPLY PROTECTION

Unidirectional zener diode transient suppressors are recommended as protection on the supply pins. The zeners clamp transients to voltages within the power supply rating and also clamp power supply reversals to ground. Whether the zeners are used or not, the system power supply should be evaluated for transient performance including power-on overshoot and power-off polarity reversals as well as line regulation.
Conditions which can cause open circuits or polarity reversals on either power supply rail should be avoided or protected against. Reversals or opens on the negative supply rail are known to induce input stage failure. Unidirectional transzorbs prevent this, and it is desirable that they be both electrically and physically as close to the amplifier as possible.

STABILITY

The PA15FL has sufficient phase margin to be stable with most capacitive loads at a gain of 10 or more, using the recommended phase compensation.
The PA15FL is externally compensated and performance can be tailored to the application. Use the graphs of small signal response and power response as a guide. The compensation capacitor C_{C} must be rated at 500 V working voltage. An NPO capacitor is recommended. The compensation network $C_{C} R_{C}$ must be mounted closely to the amplifier pins 8 and 9 to avoid spurious oscillation.

FIGURE 2. OVERVOLTAGE PROTECTION

CONTACTING CIRRUS LOGIC SUPPORT

For all Apex Precision Power product questions and inquiries, call toll free 800-546-2739 in North America. For inquiries via email, please contact apex.support@cirrus.com.
International customers can also request support by contacting their local Cirrus Logic Sales Representative.
To find the one nearest to you, go to www.cirrus.com

Abstract

IMPORTANT NOTICE Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.

Cirrus Logic, Cirrus, and the Cirrus Logic logo designs, Apex Precision Power, Apex and the Apex Precision Power logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners.

