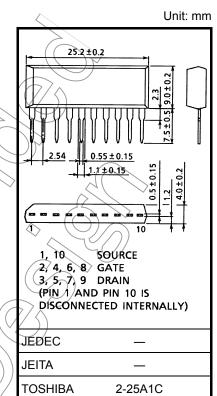
TOSHIBA Power MOS FET Module Silicon N&P Channel MOS Type (Four L²-π-MOSV in One)


MP4212

High Power High Speed Switching Applications H-Switch Driver

- 4-V gate drivability
- Small package by full molding (SIP 10 pin)
- High drain power dissipation (4-device operation) : P_T = 4 W (Ta = 25°C)
- Low drain-source ON resistance: R_{DS} (ON) = 120 m Ω (typ.) (N-ch)
 - 160 m Ω (typ.) (P-ch)
- High forward transfer admittance: $|Y_{fs}| = 5.0 \text{ S (typ.) (Nch)}$ 4.0 S (typ.) (Pch)
- Low leakage current: IGSS = $\pm 10 \ \mu A \ (max) \ (VGS = \pm 16 \ V)$ IDSS = 100 $\mu A \ (max) \ (VDS = 60 \ V)$
- Enhancement-mode: $V_{th} = 0.8$ to 2.0 V ($V_{DS} = 10$ V, $I_D = 1$ mAV

Absolute Maximum Ratings (Ta = 25°C)

Rating Characteristics Symbol Unit Nch Rch -60 Drain-source voltage VDSS 60 А ⁄ν Drain-gate voltage (R_{GS} = 20 kΩ) VDGR 60 -60 ±20 ±20 v Gate-source voltage VGSS /5 DC -5 I_D Drain current А 20 Pulse -20 IDP Drain power dissipation PD Ŵ 2.0 (1-device operation, Ta = 25°C) Drain power dissipation Øрт w 4.0 (4-device operation, Ta = 25°C) Single pulse avalanche energy EAS 129 273 mJ (Note 1) 5 Avalanche current -5 А IAR 1-device EAR 0.2 operation Repetitive avalanche m.J (Note 2) energy 4-device EART 04 operation °C Channel temperature Tch 150 -55 to 150 °C Storage temperature range Tstg

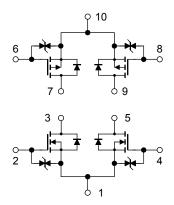
Weight: 2.1 g (typ.)

Note 1: Condition fo avalanche energy (single pulse) measurement

Nch: V_{DD} = 25 V, starting T_{ch} = 25°C, L = 7 mH, R_G = 25 Ω , I_{AR} = 5 A

Pch: V_{DD} = -25 V, starting T_{ch} = 25°C, L = 14.84 mH, R_G = 25 Ω, I_{AR} = -5 A

Note 2: Repetitive rating; pulse width limited by maximum channel temperature


Note 3: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

This transistor is an electrostatic-sensitive device. Please handle with caution.

Industrial Applications

Array Configuration

Thermal Characteristics

Characteristics	Symbol	Max	Unit
Thermal resistance from channel to ambient	ΣR _{th (ch-a)}	31.2	°C/W
(4-device operation, Ta = 25° C)			
Maximum lead temperature for soldering purposes (3.2 mm from case for t = 10 s)	TL	260	

Electrical Characteristics (Ta = 25°C) (Nch MOS FET)

Chara	acteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage curr	rent	((I _{GSS}))	$V_{GS} = \pm 16 V, V_{DS} = 0 V$	_	_	±10	μA
Drain cut-off curre	ent	HDSS	$V_{DS} = 60 V, V_{GS} = 0 V$	_	_	100	μA
Drain-source brea	akdown voltage	V (BR) DSS	$I_{\rm D}$ = 10 mA, $V_{\rm GS}$ = 0 V	60	_		V
Gate threshold vo	oltage	V _{th}	$V_{DS} = 10 N, I_{D} = 1 mA$	0.8	—	2.0	V
Drain-source ON	resistance	R _{DS} (ON)	$V_{GS} = 4 V, H_D = 2.5 A$		0.21	0.32	Ω
			V _{GS} = 10 V, I _D = 2.5 A	_	0.12	0.16	
Forward transfer	admittance	Y _{fs}	V _{DS} = 10 V, I _D = 2.5 A	3.0	5.0	—	S
Input capacitance		Ciss	\rightarrow		370	_	pF
Reverse transfer	capacitance	Crss	V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz	_	60	_	pF
Output capacitand	Output capacitance			_	180	_	pF
	Rise time	Coss	$I_D = 2.5 A$	_	18	_	
Switching time	Turn-on time	ton		_	25	_	20
Switching time Fall time	Fall time	t _f	G G M M VDD ≈ 30 V	_	55		ns
	Turn-off time	t _{off}	V _{IN} : t _r , t _f < 5 ns, duty ≤ 1%, t _w = 10 µs	_	170	_	
ů ů	Total gate charge (Gate-source plus gate-drain)			_	12	_	nC
Gate-source charge		Q _{gs}	V _{DD} ≈ 48 V, V _{GS} = 10 V, I _D = 5 A	_	8	_	nC
Gate-drain ("miller") charge		Q _{gd}		_	4	_	nC

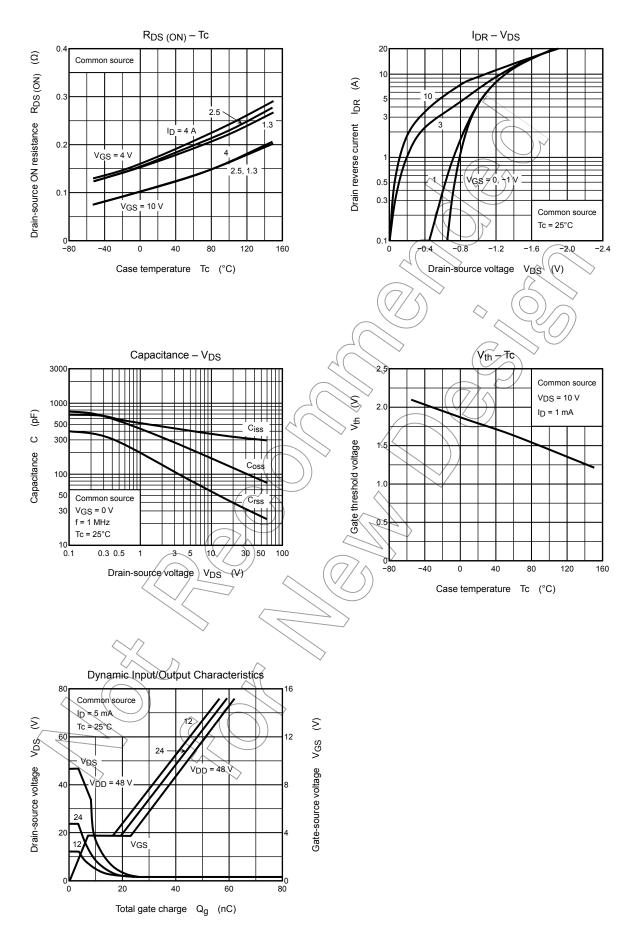
Source-Drain Diode Ratings and Characteristics (Ta = 25°C)

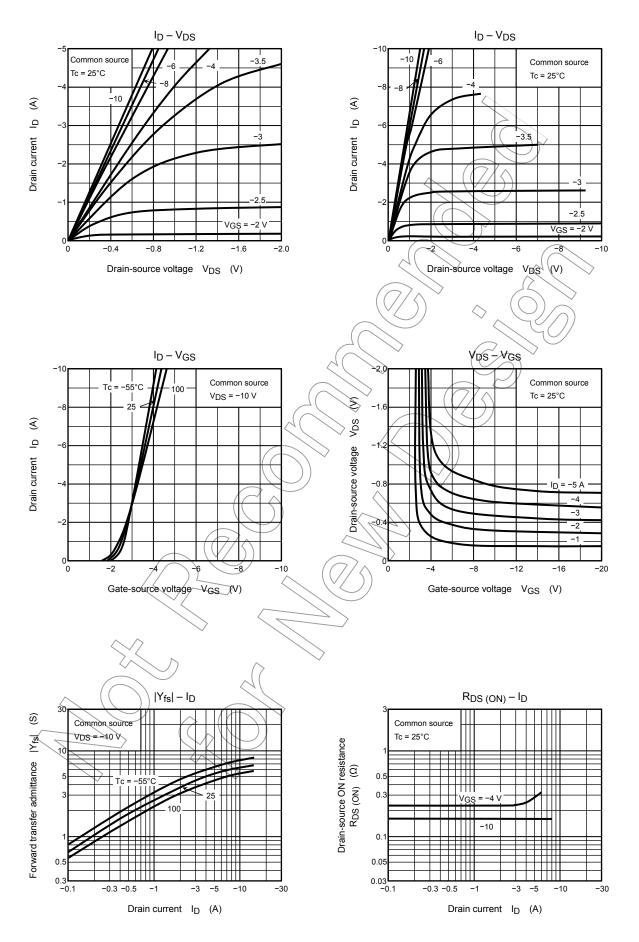
Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Continuous drain reverse current	I _{DR}	—	_	_	5	А
Pulse drain reverse current	I _{DRP}	—	_	—	20	А
Diode forward voltage	V _{DSF}	I _{DR} = 5 A, V _{GS} = 0 V	И	—	-1.7	V
Reverse recovery time	t _{rr}	I _{DR} = 5 A, V _{GS} = 0 V)	70	_	ns
Reverse recovery charge	Q _{rr}	dI _{DR} /dt = 50 A/µs	(\mathcal{F})) 0.1	-	μC

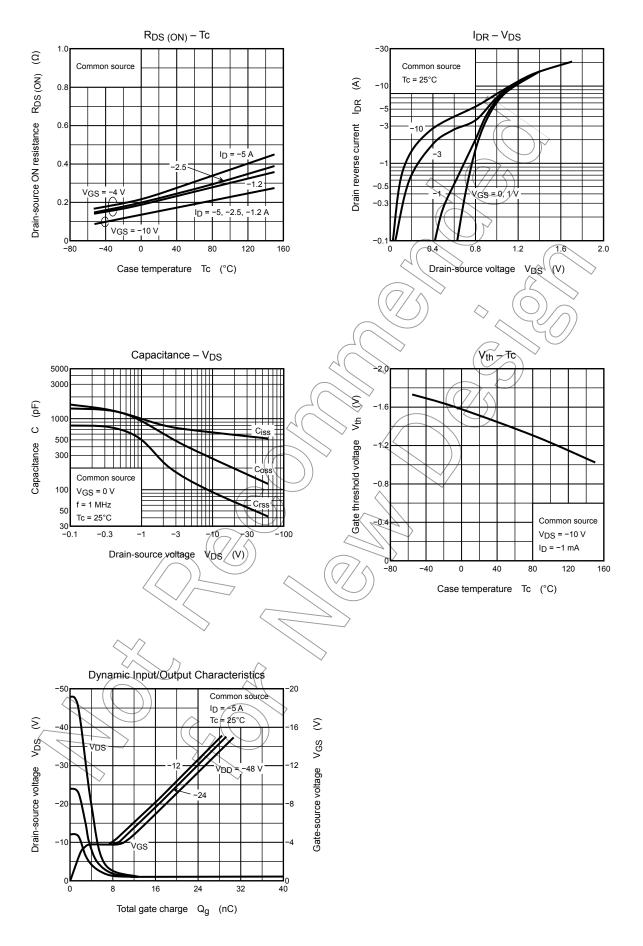
Electrical Characteristics (Ta = 25°C) (Pch MOS FET)

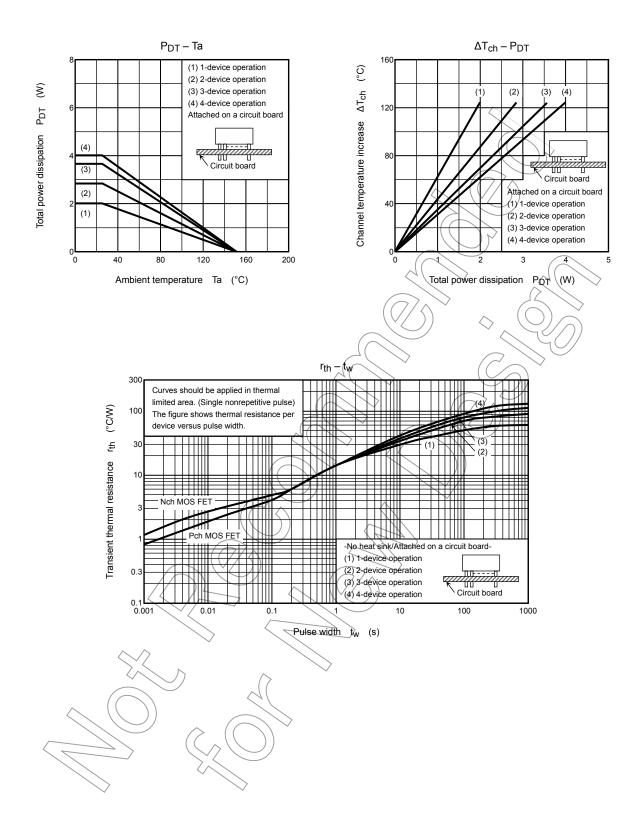

Gate leakage currentI IGSSVGS = ±16 V, VDS = 0 V-±10µAGate leakage currentIDSSVDS = -60 V, VGS = 0 V-±10µADrain-source breakdown voltageV (BR) DSSID = -10 mA, VGS = 0 VVGate threshold voltageVIIVDS = -10 V, ID = ±10 MA-0.60Orain-source ON resistanceR'IS (N)VGS = -10 V, ID = -2.5 A0.160.19Forward transfer admittanceIY fslVDS = -10 V, ID = -2.5 A-0.160.19Output capacitanceC iss-290-VDS = -10 V, ID = -2.5 A2.00-Output capacitance-0.20C iss-0.160.160.19Simultatione-290-290Output capacitanceC iss-200Turm-on timetoffVIII + 10-200-<								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Chara	cteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate leakage curr	rent	I _{GSS}	$V_{GS} = \pm 16 V, V_{DS} = 0 V$	_	\square	±10	μA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain cut-off curre	ent	I _{DSS}	$V_{DS} = -60 V, V_{GS} = 0 V$		4	-100	μA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-source brea	kdown voltage	V (BR) DSS	$I_{\rm D} = -10 \text{ mA}, V_{\rm GS} = 0.0$	-60	$\leq \sim$	> —	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate threshold vo	Itage	V _{th}	$V_{DS} = -10 V, I_D = -1 mA$	-0.8)A	-2.0	V
Forward transfer admittance $ Y_{fs} $ $V_{DS} = -10 \vee, I_D = -2.5 A$ 2.0 4.0 - S Input capacitance C_{iss} - 630 - pF Reverse transfer capacitance C_{rss} $V_{DS} = -10 \vee, V_{GS} = 0 \vee, f = 1 MHz$ - 95 - pF Output capacitance C_{oss} - 290 - pF Qutput capacitance C_{oss} - $10 \vee V_{GS} = 0 \vee, f = 1 MHz$ - 95 - pF Output capacitance C_{oss} - $10 \vee V_{GS} = 0 \vee, f = 1 MHz$ - 95 - pF Output capacitance C_{oss} - $10 \vee V_{GS} = 0 \vee, f = 1 MHz$ - 290 - pF Switching time t_r V_{CS} V_{CS} V_{OUT} - 255 - Switching time t_f $V_{OD} \approx -30 \vee$ - 555 - - 555 - - Total gate charge Q_g $V_{DD} \approx -48 \vee, V_{GS} = -10 \vee, I_D = -5 A$ - 16 - nCC Gate-source plu	Drain-source ON	resistance	R _{DS (ON)}			$\langle \bigcirc$		Ω
Reverse transfer capacitance C_{rss} $V_{DS} = -10 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{T} = 1 \text{ MHz}$ $ 95$ $ pF$ Output capacitance C_{0SS} $ 290$ $ pF$ Switching time tr r 0 V $l_D = -2.5 \text{ A}$ $ 25$ $-$ Turn-on time ton 0 V r 0 V $ 25$ $ -$ Switching time tr tf 0 V r 0 V $ 45$ $-$ Fall time tf V_{OS} $ 0 \text{ V}$ $ 55$ $ -$ Total gate charge (gate-source plus gate-drain) Q_g $V_{DD} \approx -48 \text{ V}, \text{ V}_{GS} = -10 \text{ V}, \text{ I}_D = -5 \text{ A}$ $ 22$ $ nC$	Forward transfer a	admittance	Y _{fs}		2.0	4.0	_	S
Output capacitance C_{0SS} $ 290$ $ pF$ Markowski king time t_r 0 $l_D = -2.5$ A $ 25$ $ 25$ $-$ Switching timeTurn-on time t_{on} V_{GS} $ C_{CS}$ $ 455$ $ 455$ $-$ Fall time t_f V_{OS} $ 0$ V_{OS} $ 0$ $ 555$ $ 555$ $-$ Total gate charge Q_g V_{IN} : t_r , $t_r < 5$ ns, duty $\leq 1\%$, $t_w = 10$ µs $ 200$ $ 222$ $ nC$ Gate-source plus gate-drain) Q_{gs} $V_{DD} \approx -48$ V, $V_{GS} = -10$ V, $I_D = -5$ A $ 16$ $ nC$	Input capacitance		C _{iss}		\ -	630	_	pF
Rise timetr $l_D = -2.5 \text{ A}$ V_{GS} -10 V -10 V -10 V -10 V -10 V -10 V -10 V -10 V -10 V -10 V -10 V -10 V -10 V -10 V Total gate charge (gate-source plus gate-drain) Q_g Q_{gs} Q_g $V_DD \approx -48 \text{ V}, \text{ V}_{GS} = -10 \text{ V}, \text{ I}_D = -5 \text{ A}$ -10 V -10 V -10 V	Reverse transfer of	capacitance	C _{rss}	$V_{DS} = -10 V$, $V_{GS} = 0 V$, $T = 1 MHz$	/ _	95	_	pF
Switching time $I_{D} = -2.5 \text{ Å}$ $I_{U} = -2.5 \text{ Å}$ $I_{D} = -2.5 \text{ Å}$ V_{GS} -10 V -10 V	Output capacitand	ce	C _{oss}			290	_	pF
Switching timeTurn-on timeton V_{GS} $ V_{OUT}$ $ 45$ $-$ Switching timeFall timetr $ 0$ $ 55$ $ 55$ $-$ Fall timetr $V_{OD} \approx -30$ $ 0$ $ 55$ $ 200$ $-$ Total gate charge (gate-source plus gate-drain) Q_g $V_{DD} \approx -48$ $V, V_{GS} = -10$ $V, I_D = -5$ $ 16$ $ nC$	Switching time	Rise time	tr	$I_{\rm D} = -2.5$ A	_	25	_	
Fall timetr \sim		Turn-on time	ton			45	_	20
Turn-off time t_{off} V_{IN} : t_r , $t_f < 5$ ns, duty $\leq 1\%$, $t_W = 10 \ \mu s$ - 200 -Total gate charge (gate-source plus gate-drain) Q_g $V_{DD} \approx -48 \ V$, $V_{GS} = -10 \ V$, $I_D = -5 \ A$ - 22 -nCGate-source charge Q_{gs} $V_{DD} \approx -48 \ V$, $V_{GS} = -10 \ V$, $I_D = -5 \ A$ - 16 -nC		Fall time	tr	R L	_	55	_	115
QgQg $-$ 22 $ nC$ (gate-source plus gate-drain) Q_{gs} $V_{DD} \approx -48 \text{ V}, V_{GS} = -10 \text{ V}, I_D = -5 \text{ A}$ $ 16$ $ nC$		Turn-off time	t _{off}		_	200	Ι	
Gate-source charge Qgs — 16 — nC		~	Qg		_	22	_	nC
	Gate-source charge		Qgs	$v_{DD} \sim -40 v, v_{GS}10 v, 1D = -5 A$	—	16	—	nC
	Gate-drain ("miller	r") charge	Qgd		—	6	—	nC

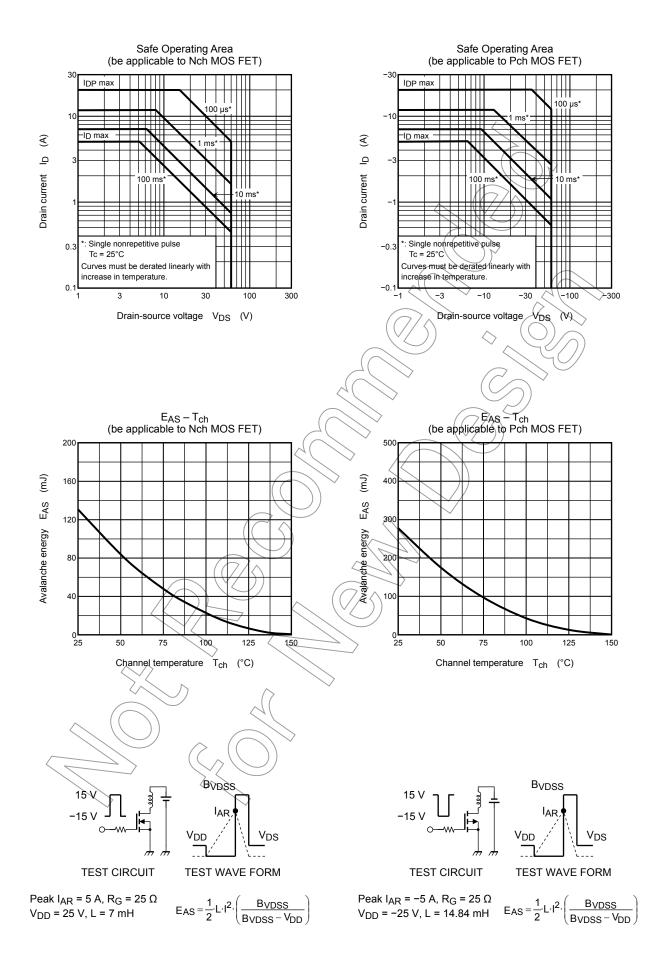
Source-Drain Diode Ratings and Characteristics (Ta = 25°C)


Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Continuous drain reverse current	I _{DR}	—	_	_	-5	А
Pulse drain reverse current	I _{DRP}	—	_	_	-20	А
Diode forward voltage	V _{DSF}	I _{DR} = -5 A, V _{GS} = 0 V	_	_	1.7	V
Reverse recovery time	t _{rr}	I _{DR} = -5 A, V _{GS} = 0 V	_	80	_	ns
Reverse recovery charge	Q _{rr}	dI _{DR} /dt = 50 A/µs	_	0.1	_	μC


Marking




Nch MOS FET



Pch MOS FET

RESTRICTIONS ON PRODUCT USE

The information contained herein is subject to change without notice.

20070701-EN

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability

Handbook" etc.

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.