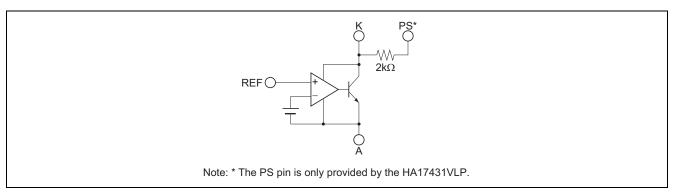
RENESAS

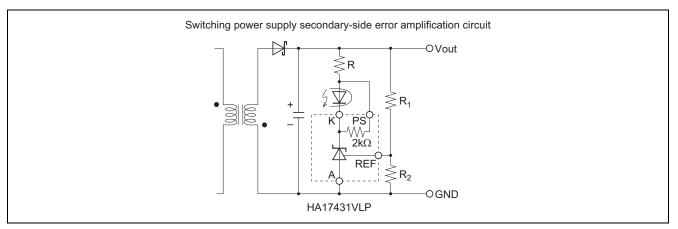
HA17431 Series

Shunt Regulator

R03DS0086EJ0400 Rev.4.00 Jan 10, 2014


Description

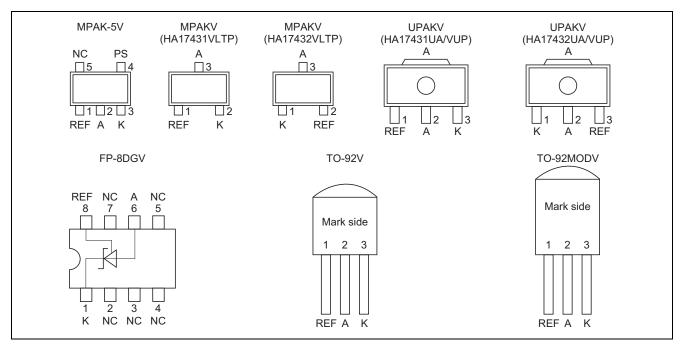
The HA17431 series is temperature-compensated variable shunt regulators. The main application of these products is in voltage regulators that provide a variable output voltage. The on-chip high-precision reference voltage source can provide $\pm 1\%$ accuracy in the V versions, which have a V_{KA} max of 16 volts. The HA17431VLP, which is provided in the MPAK-5V package, is designed for use in switching mode power supplies. It provides a built-in photocoupler bypass resistor for the PS pin, and an error amplifier can be easily constructed on the supply side.


Features

- The V versions provide 2.500 V $\pm 1\%$ at Ta = 25°C
- The HA17431VLP includes a photocoupler bypass resistor (2 k Ω)
- The reference voltage has a low temperature coefficient
- The MPAK-5V(5-pin), MPAKV(3-pin) and UPAKV miniature packages are optimal for use on high mounting density circuit boards

Block Diagram

Application Circuit Example



Ordering Information

		Refere	nce voltage (at 2	25°C)		
ltem		Normal Version ±4% 2.395V to 2.495V to 2.595V	A Version ±2.2% 2.440V to 2.495V to 2.550V	V Version ±1% 2.475V to 2.500V to 2.525V	Package Code (Package Name)	Operating Temperature Range
	HA17431FP	0			PRSP0008DE-B (FP-8DGV)	
	HA17431FPA		0		PRSP0008DE-B (FP-8DGV)	
	HA17431P	0			PRSS0003DC-A (TO-92MODV)	
	HA17431PA		0		PRSS0003DC-A (TO-92MODV)	
	HA17431PNA		0		PRSS0003DA-A (TO-92V)	
Industrial use	HA17431VLP			0	PLSP0005ZB-A (MPAK-5V)	–20 to +85°C
	HA17431VP			0	PRSS0003DA-A (TO-92V)	
	HA17431VUP			0	PLZZ0004CA-A (UPAKV)	
	HA17432VUP			0	PLZZ0004CA-A (UPAKV)	
	HA17431VLTP			0	PLSP0003ZB-A (MPAKV)	
	HA17432VLTP			0	PLSP0003ZB-A (MPAKV)	
Commercial	HA17431UA		0		PLZZ0004CA-A (UPAKV)	–20 to +85°C
use	HA17432UA		0		PLZZ0004CA-A (UPAKV)	2010 100 0

Pin Arrangement

Absolute Maximum Ratings

(14 -0 0)	(Ta	=	25°	C)
-----------	-----	---	-----	----

		Rat			
Item	Symbol	HA17431VLP	HA17431VP	Unit	Notes
Cathode voltage	V _{KA}	16	16	V	1
PS term. voltage	V _{PS}	V _{KA} to 16	_	V	1,2,3
Continuous cathode current	lκ	-50 to +50	-50 to +50	mA	
Reference input current	Iref	–0.05 to +10	-0.05 to +10	mA	
Power dissipation	PT	150 * ⁴	500 * ⁵	mW	4, 5
Operating temperature range	Topr	-20 to +85	-20 to +85	°C	
Storage temperature	Tstg	–55 to +150	-55 to +150	°C	

		Rat			
Item	Symbol	HA17431VUP/HA17432VUP	HA17431VLTP/HA17432VLTP	Unit	Notes
Cathode voltage	V _{KA}	16	16	V	1
PS term. voltage	V _{PS}	—	—	V	1,2,3
Continuous cathode current	Ι _κ	–50 to +50	-50 to +50	mA	
Reference input current	Iref	–0.05 to +10	–0.05 to +10	mA	
Power dissipation	PT	800 * ⁸	150 * ⁴	mW	4, 8
Operating temperature range	Topr	-20 to +85	-20 to +85	°C	
Storage temperature	Tstg	–55 to +150	-55 to +150	°C	

		Rati			
Item	Symbol	HA17431PNA	HA17431P/PA	Unit	Notes
Cathode voltage	V _{KA}	40	40	V	1
Continuous cathode current	Ι _κ	-100 to +150	-100 to +150	mA	
Reference input current	Iref	–0.05 to +10	-0.05 to +10	mA	
Power dissipation	PT	500 * ⁵	800 * ⁶	mW	5, 6
Operating temperature range	Topr	–20 to +85	-20 to +85	°C	
Storage temperature	Tstg	–55 to +150	–55 to +150	°C	

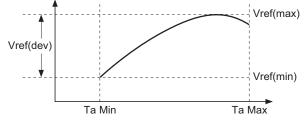
		Rat			
Item	Symbol	HA17431FP/FPA	HA17431UA/HA17432UA	Unit	Notes
Cathode voltage	V _{KA}	40	40	V	1
Continuous cathode current	Ι _κ	-100 to +150	-100 to +150	mA	
Reference input current	Iref	–0.05 to +10	-0.05 to +10	mA	
Power dissipation	PT	500 * ⁷	800 * ⁸	mW	7, 8
Operating temperature range	Topr	–20 to +85	-20 to +85	°C	
Storage temperature	Tstg	–55 to +125	-55 to +150	°C	

Notes: 1. Voltages are referenced to anode.

- 2. The PS pin is only provided by the HA17431VLP.
- 3. The PS pin voltage must not fall below the cathode voltage. If the PS pin is not used, the PS pin is recommended to be connected with the cathode.
- 4. Ta \leq 25°C. If Ta > 25°C, derate by 1.2 mW/°C.
- 5. Ta \leq 25°C. If Ta > 25°C, derate by 4.0 mW/°C.
- 6. Ta \leq 25°C. If Ta > 25°C, derate by 6.4 mW/°C.
- 7. 50 mm \times 50 mm \times 1.5mmt glass epoxy board (5% wiring density), Ta \leq 25°C. If Ta > 25°C, derate by 5 mW/°C.
- 8. $15 \text{ mm} \times 25 \text{ mm} \times 0.7 \text{mmt}$ alumina ceramic board, Ta $\leq 25^{\circ}$ C. If Ta > 25°C, derate by 6.4 mW/°C.

Electrical Characteristics

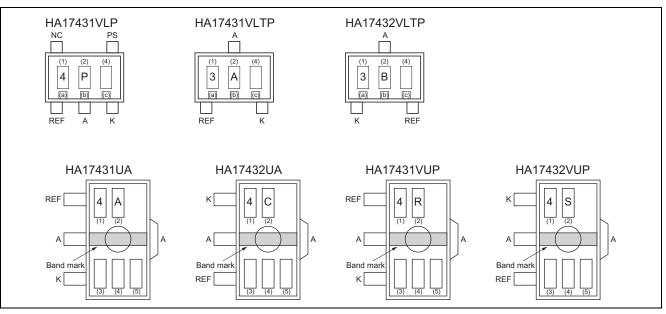
HA17431VLP/VP/VUP/VLTP, HA17432VUP/VLTP


						$(Ta = 25^{\circ}C, I_{K})$	x = 10 mA
Item	Symbol	Min	Тур	Max	Unit	Test Conditions	Notes
Reference voltage	Vref	2.475	2.500	2.525	V	V _{KA} = Vref	
Reference voltage	Vref(dev)	_	10	—	mV	V _{KA} = Vref,	1
temperature deviation						Ta = –20°C to +85°C	
Reference voltage	∆Vref/∆Ta		±30	_	ppm/°C	V _{KA} = Vref,	
temperature coefficient						0°C to 50°C gradient	
Reference voltage regulation	$\Delta V ref / \Delta V_{KA}$		2.0	3.7	mV/V	V _{KA} = Vref to 16 V	
Reference input current	Iref	—	2	6	μA	R₁ = 10 kΩ, R₂ = ∞	
Reference current	Iref(dev)	_	0.5	_	μA	R_1 = 10 kΩ, R_2 = ∞,	
temperature						Ta = –20°C to +85°C	
deviation							
Minimum cathode current	Imin		0.4	1.0	mA	V _{KA} = Vref	2
Off state cathode current	loff		0.001	1.0	μA	V _{KA} = 16 V, Vref = 0 V	
Dynamic impedance	ZKA	_	0.2	0.5	Ω	V _{KA} = Vref,	
						I_{K} = 1 mA to 50 mA	
Bypass resistance	R _{PS}	1.6	2.0	2.4	kΩ	I _{PS} = 1 mA	3
Bypass resistance	ΔR _{PS} /ΔTa	_	+2000	_	ppm/°C	I _{PS} = 1 mA,	3
temperature coefficient						0°C to 50°C gradient	

HA17431P/PA/FP/FPA/PNA/UA, HA17432UA

 $(Ta = 25^{\circ}C, I_{K} = 10 \text{ mA})$

ltem	Symbol	Min	Тур	Max	Unit	Tes	Notes	
Reference voltage	Vref	2.440	2.495	2.550	V	V _{KA} = Vref		А
		2.395	2.495	2.595				Normal
Reference voltage temperature deviation	Vref(dev)	_	5	(17)	mV	V _{KA} = Vref	Ta = 0°C to +70°C	1, 4
Reference voltage	$\Delta V ref / \Delta V_{KA}$	—	1.4	3.7	mV/V	V _{KA} = Vref to 10 V		
regulation		_	1	2.2		V _{KA} = 10 V to 40 V		
Reference input current	Iref	—	3.8	6	μΑ	R ₁ = 10 kΩ,	R ₂ = ∞	
Reference current temperature deviation	Iref(dev)	—	0.5	(2.5)	μA	R ₁ = 10 kΩ, Ta = 0°C to		4
Minimum cathode current	Imin	_	0.4	1.0	mA	$V_{KA} = Vref$		2
Off state cathode current	loff	—	0.001	1.0	μA	V _{KA} = 40 V, Vref = 0 V		
Dynamic impedance	Z _{KA}	_	0.2	0.5	Ω	V_{KA} = Vref, I _K = 1 mA to 100 mA		


Notes: 1. Vref(dev) = Vref(max) – Vref(min)

- 2. Imin is given by the cathode current at Vref = $Vref_{(IK=10mA)} 15 \text{ mV}$.
- 3. R_{PS} is only provided in HA17431VLP.
- 4. The maximum value is a design value (not measured).

MPAK-5V(5-pin), MPAKV(3-pin) and UPAKV Marking Patterns

The marking patterns shown below are used on MPAK-5V, MPAKV and UPAKV products. Note that the product code and mark pattern are different. The pattern is laser-printed.

Notes: 1. Boxes (1) to (5) in the figures show the position of the letters or numerals, and are not actually marked on the package.

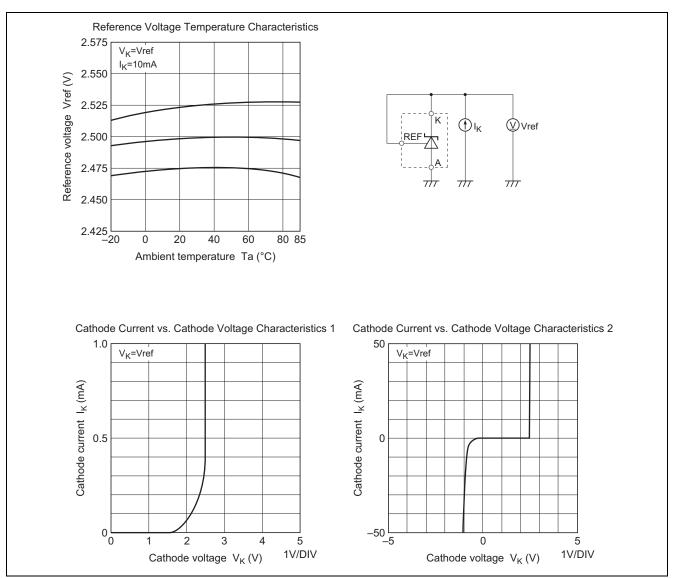
2. The letters (1) and (2) show the product specific mark pattern.

Product	(1)	(2)
HA17431VLP	4	Р
HA17431VUP	4	R
HA17432VUP	4	S
HA17431VLTP	3	A
HA17432VLTP	3	В
HA17431UA	4	A
HA17432UA	4	С

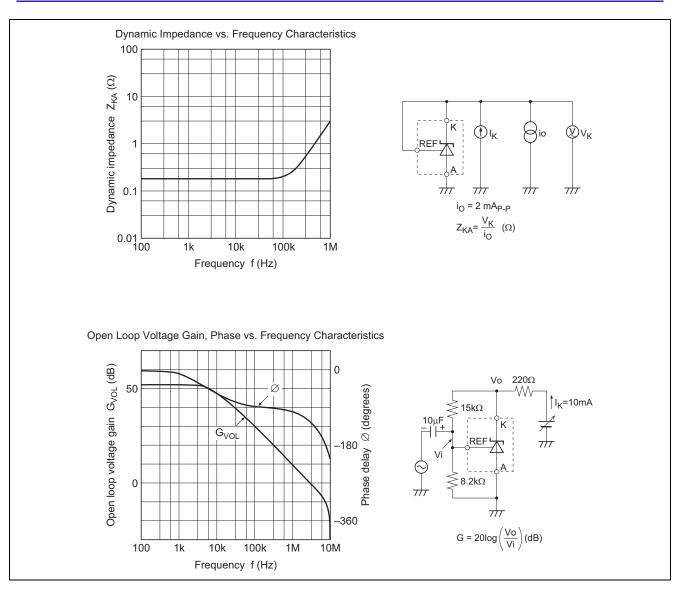
3. The letter (3) shows the production year code (the last digit of the year) for UPAKV products.

4. The bars (a), (b) and (c) show a production year code for MPAK-5V and MPAKV products as shown below. After 2015 the code is repeated every 8 years.

Year	2007	2008	2009	2010	2011	2012	2013	2014		
(a)	Bar	Bar	None	None	None	None	Bar	Bar		
(b)	Bar	Bar	None	None	Bar	Bar	None	None		
(C)	None	Bar	None	Bar	None	Bar	None	Bar		

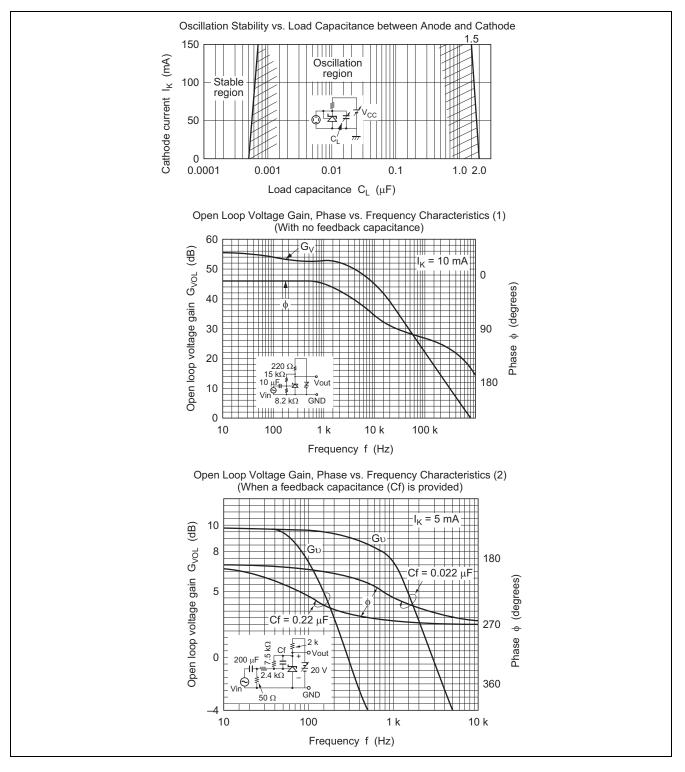

5. The letter (4) shows the production month code (see table below).

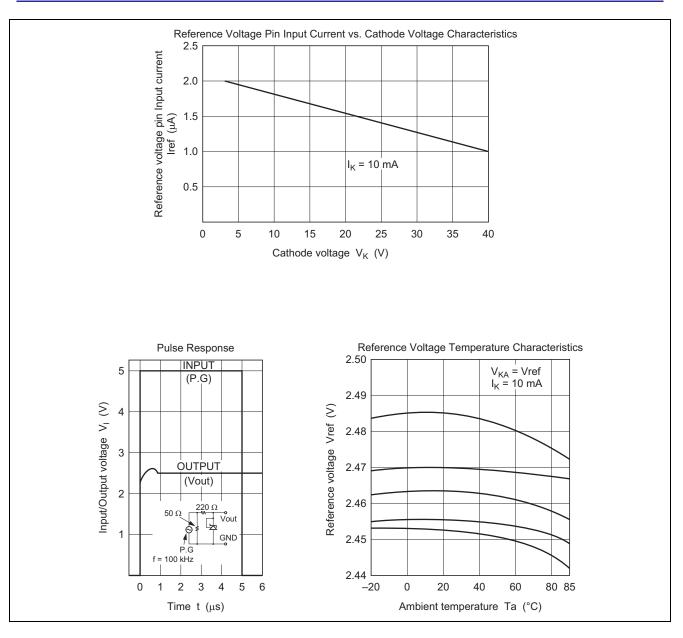
Production month	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Marked code	А	В	С	D	Е	F	G	Н	J	K	L	Μ

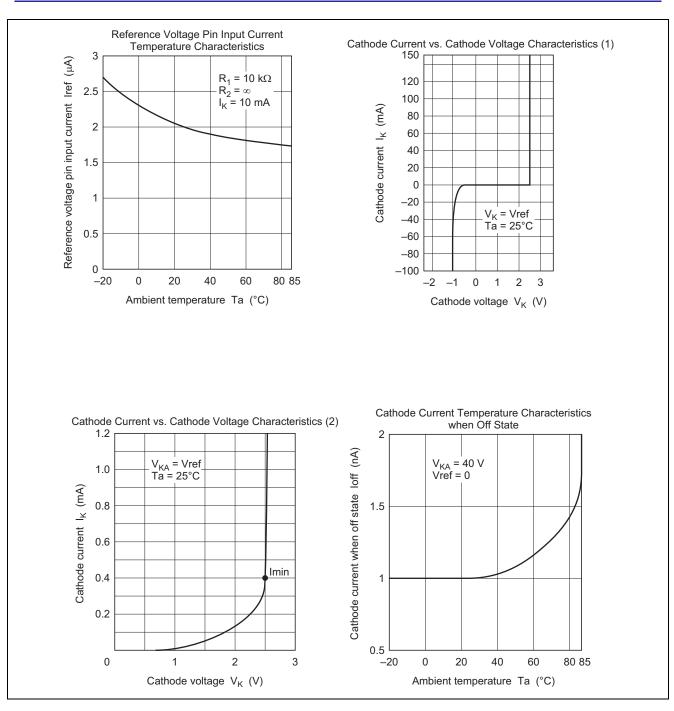

6. The letter (5) shows manufacturing code. For UPAKV products.

Characteristics Curves

HA17431VLP/VP/VUP/VLTP, HA17432VUP/VLTP







HA17431P/PA/FP/FPA/PNA/UA, HA17432UA

Application Examples

As shown in the figure on the right, this IC operates as an inverting amplifier, with the REF pin as input pin. The openloop voltage gain is given by the reciprocal of "reference voltage deviation by cathode voltage change" in the electrical specifications, and is approximately 50 to 60 dB. The REF pin has a high input impedance, with an input current Iref of 3.8 μ A Typ (V version: Iref = 2 μ A Typ). The output impedance of the output pin K (cathode) is defined as dynamic impedance Z_{KA}, and Z_{KA} is low (0.2 Ω) over a wide cathode current range. A (anode) is used at the minimum potential, such as ground.

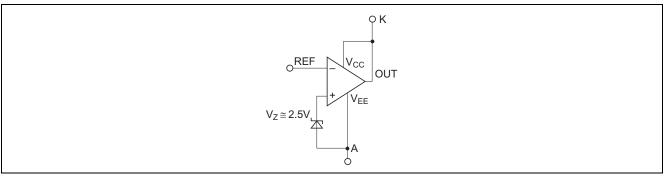


Figure 1 Operation Diagram

Application Hints

No.	Application Example	Description
1	Reference voltage generation circuit	This is the simplest reference voltage circuit. The value of the resistance R is set so that cathode current $I_K \ge 1$ mA. Output is fixed at Vout $\cong 2.5$ V. The external capacitor C_L ($C_L \ge 3.3 \mu$ F) is used to prevent oscillation in normal applications.
2	Variable output shunt regulator circuit $Vin O \longrightarrow C_L$ $R_1 \longrightarrow C_L$ $R_2 \longrightarrow C_L$ $R_2 \longrightarrow C_L$ $R_2 \longrightarrow C_L$ $R_2 \longrightarrow C_L$ $R_2 \longrightarrow C_L$ $R_2 \longrightarrow C_L$	This is circuit 1 above with variable output provided. Here, Vout $\cong 2.5 \text{ V} \times \frac{(R_1 + R_2)}{R_2}$ Since the reference input current Iref = 3.8 µA Typ (V version: Iref = 2 µA Typ) flows through R ₁ , resistance values are chosen to allow the resultant voltage drop to be ignored.

Application Hints (cont.)

No.	Application Example	Description
3	Single power supply inverting comparator circuit	$\label{eq:starsest} \begin{array}{ c c c c } \hline This is an inverting type comparator with an input threshold voltage of approximately 2.5 V. Rin is the REF pin protection resistance, with a value of several k\Omega to several tens of k\Omega. \\ R_L is the load resistance, selected so that the cathode current I_K \geq 1 \\ mA when Vout is low. \\ \hline \hline C1 & Less then 2.5 V & V_{CC} (V_{OH}) & OFF \\ \hline C2 & 2.5 V \text{ or more} & Approx. 2 V (V_{OL}) & ON \\ \hline \end{array}$
4	$\begin{array}{c} \text{GND} \circ & \text{CH} \\ \hline \\ \text{AC amplifier circuit} \\ \hline \\ \text{Cf} \\ \hline \\ \hline \\ \text{Cin} \\ R_3 \\ \hline \\ \text{R}_2 \\ \hline \\ \text{ReF} \\ \text{A} \\ \end{array} \\ \begin{array}{c} \text{OGND} \\ \text{OGND} \\ \hline \\ \text{OWD} \\ \hline \\ \text{OWD} \\ \hline \\ \text{Vin} \\ \hline \\ \text{ReF} \\ \text{A} \\ \hline \\ \text{ReF} \\ \text{A} \\ \hline \\ \text{Cin} \\ R_2 \\ \hline \\ \text{ReF} \\ \text{A} \\ \hline \\ \text{Cin} \\ R_2 \\ \hline \\ \text{ReF} \\ \text{A} \\ \hline \\ \text{Cin} \\ R_2 \\ \hline \\ \text{Cin} \\ R_1 \\ \hline \\ \text{Cin} \\ R_2 \\ \hline \\ \text{Cin} \\ R_1 \\ \hline \\ \text{Cin} \\ R_2 \\ \hline \\ \ \\ \text{Cin} \\ R_2 \\ \hline \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \$	This is an AC amplifier with voltage gain G = $-R_1 / (R_2 / / R_3)$. The input is cut by capacitance Cin, so that the REF pin is driven by the AC input signal, centered on 2.5 V _{DC} . R ₂ also functions as a resistance that determines the DC cathode potential when there is no input, but if the input level is low and there is no risk of Vout clipping to V _{CC} , this can be omitted. To change the frequency characteristic, Cf should be connected as indicated by the dotted line.
5	$Gain G = \frac{R_1}{R_2 // R_3} (DC gain)$ Cutoff frequency fc = $\frac{1}{2\pi Cf (R_1 // R_2 // R_3)}$ Switching power supply error amplification circuit	This circuit performs control on the secondary side of a transformer, and is often used with a switching power supply that employs a
	R1 Secondary side GND	The output voltage (between V+ and V–) is given by the following formula: Vout $\cong 2.5 \text{ V} \times \frac{(R_1 + R_2)}{R_2}$ In this circuit, the gain with respect to the Vout error is as follows: $G = \frac{R_2}{(R_1 + R_2)} \times \begin{bmatrix} HA17431 \text{ open} \\ loop \text{ gain} \end{bmatrix} \times \begin{bmatrix} photocoupler \\ total \text{ gain} \end{bmatrix}$ As stated earlier, the HA17431 open-loop gain is 50 to 60 dB.
	Note: LED : Light emitting diode in photocoupler R3 : Bypass resistor to feed IK(>Imin) when LED current vanishes R4 : LED protection resistance	

Application Hints (cont.)

No.	Application Example	Description
6	Constant voltage regulator circuit $V_{CC} \circ R_1 \rightarrow Q$ $R_1 \rightarrow Q$ $R_2 \rightarrow V_{OUt}$ $R_2 \rightarrow V_{OUt}$ $R_3 \rightarrow GND$	This is a 3-pin regulator with a discrete configuration, in which the output voltage Vout = $2.5 \text{ V} \times \frac{(\text{R}_2 + \text{R}_3)}{\text{R}_3}$ R ₁ is a bias resistance for supplying the HA17431 cathode current and the output transistor Q base current.
7	Discharge type constant current circuit	This circuit supplies a constant current of $I_L \cong \frac{2.5 \text{ V}}{R_S}$ [A] into the load. Caution is required since the HA17431 cathode current is also superimposed on I_L . The requirement in this circuit is that the cathode current must be greater than Imin = 1 mA. The I_L setting therefore must be on the order of several mA or more.
8	Induction type constant current circuit V_{CC} R I_L Q	In this circuit, the load is connected on the collector side of transistor Q in circuit 7 above. In this case, the load floats from GND, but the HA17431 cathode current is not superimposed on I _L , so that I _L can be kept small (1 mA or less is possible). The constant current value is the same as for circuit 7 above: $I_L \cong \frac{2.5 \text{ V}}{\text{R}_S} [A]$

Design Guide for AC-DC SMPS (Switching Mode Power Supply)

- 1. Use of Shunt Regulator in Transformer Secondary Side Control
- This example is applicable to both forward transformers and flyback transformers. A shunt regulator is used on the secondary side as an error amplifier, and feedback to the primary side is provided via a photocoupler.

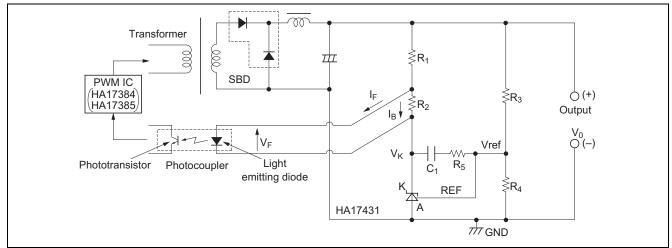


Figure 2 Typical Shunt Regulator/Error Amplifier

- 2. Determination of External Constants for the Shunt Regulator
 - A. DC characteristic determination

In figure 2, R_1 and R_2 are protection resistor for the light emitting diode in the photocoupler, and R_2 is a bypass resistor to feed I_K minimum, and these are determined as shown below. The photocoupler specification should be obtained separately from the manufacturer. Using the parameters in figure 2, the following formulas are obtained:

$$\mathsf{R}_1 = \frac{\mathsf{V}_0 - \mathsf{V}_\mathsf{F} - \mathsf{V}_\mathsf{K}}{\mathsf{I}_\mathsf{F} + \mathsf{I}_\mathsf{B}} \ , \ \mathsf{R}_2 = \frac{\mathsf{V}_\mathsf{F}}{\mathsf{I}_\mathsf{B}}$$

 V_K is the HA17431 operating voltage, and is set at around 3 V, taking into account a margin for fluctuation. R_2 is the current shunt resistance for the light emitting diode, in which a bias current I_B of around 1/5 I_F flows. Next, the output voltage can be determined by R3 and R4, and the following formula is obtained:

$$V_0 = \frac{R_3 + R_4}{R_4} \times \text{Vref, Vref} = 2.5 \text{ V Typ}$$

The absolute values of R_3 and R_4 are determined by the HA17431 reference input current Iref and the AC characteristics described in the next section. The Iref value is around 3.8 μ A Typ. (V version: 2 μ A Typ)

B. AC characteristic determination

This refers to the determination of the gain frequency characteristic of the shunt regulator as an error amplifier. Taking the configuration in figure 2, the error amplifier characteristic is as shown in figure 3.

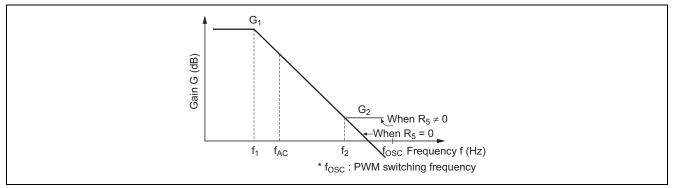


Figure 3 HA17431 Error Amplification Characteristic

In Figure 3, the following formulas are obtained:

Gain $G_1 = G_0 \approx 50 \text{ dB to } 60 \text{ dB}$ (determined by shunt regulator)

$$G_2 = \frac{R_5}{R_3}$$

Corner frequencies

 $f_1 = 1/(2\pi C_1 G_0 R_3)$

 $f_2 = 1/(2\pi C_1 R_5)$

 G_0 is the shunt regulator open-loop gain; this is given by the reciprocal of the reference voltage fluctuation $\Delta V ref \Delta V_{KA}$, and is approximately 50 dB.

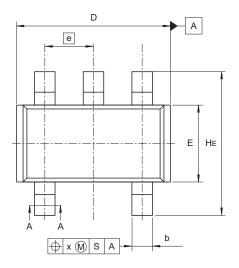
3. Practical Example

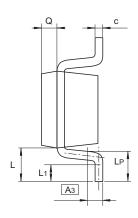
Consider the example of a photocoupler, with an internal light emitting diode $V_F = 1.05$ V and $I_F = 2.5$ mA, power supply output voltage $V_2 = 5$ V, and bias resistance R_2 current of approximately 1/5 I_F at 0.5 mA. If the shunt regulator $V_K = 3$ V, the following values are found.

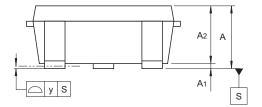
$$R_{1} = \frac{5V - 1.05V - 3V}{2.5\text{mA} + 0.5\text{mA}} = 316(\Omega) \text{ (}330\Omega \text{ from E24 series)}$$
$$R_{2} = \frac{1.05V}{0.5\text{mA}} = 2.1(\text{k}\Omega) \text{ (}2.2\text{k}\Omega \text{ from E24 series)}$$

Next, assume that $R_3 = R_4 = 10 \text{ k}\Omega$. This gives a 5 V output. If $R_5 = 3.3 \text{ k}\Omega$ and $C_1 = 0.022 \mu\text{F}$, the following values are found.

 $G_2 = 3.3 \text{ k}\Omega / 10 \text{ k}\Omega = 0.33 \text{ times} (-10 \text{ dB})$

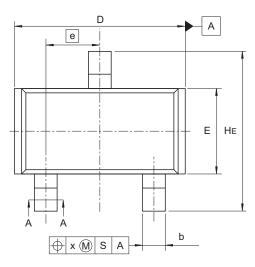

 f_1 = 1 / (2 \times π \times 0.022 μ F \times 316 \times 10 kΩ) = 2.3 (Hz)

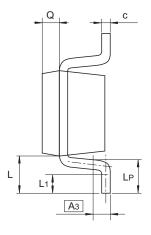

 $f_2 = 1 / (2 \times \pi \times 0.022 \ \mu\text{F} \times 3.3 \ \text{k}\Omega) = 2.2 \ (\text{kHz})$

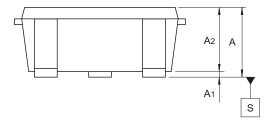


Package Dimensions

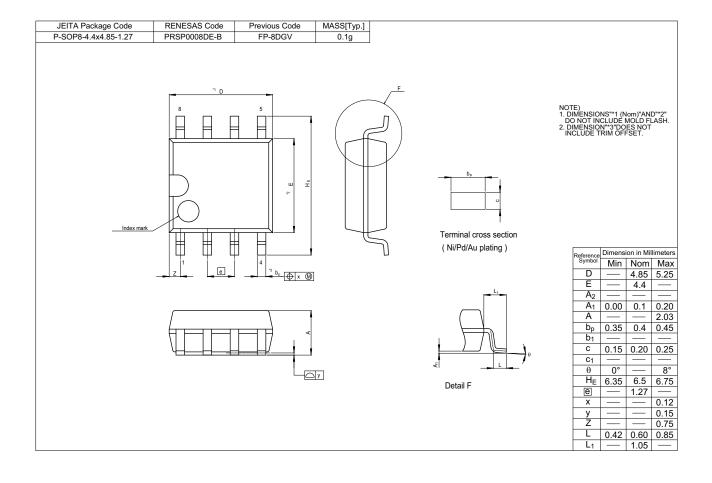
JEITA Package Code	RENESAS Code	Previous Code	MASS (Typ) [g]
SC-74A	PLSP0005ZB-A	MPAK-5 / MPAK-5V	0.015



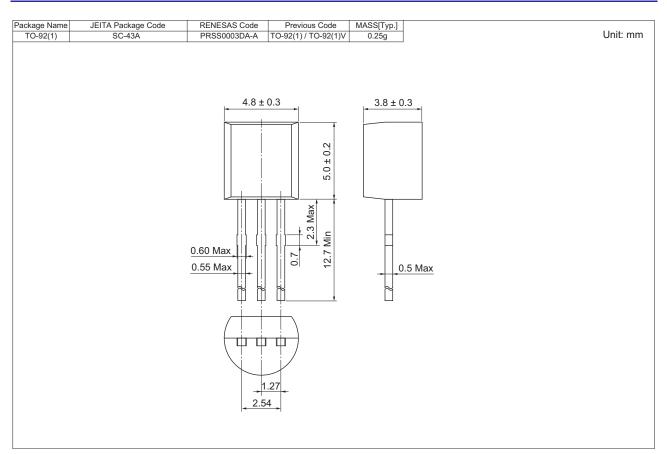

Reference	Dimensions in millimeters			
Symbol	Min	Nom	Max	
Α	1.0		1.4	
A ₁	0		0.1	
A ₂	1.0	1.1	1.3	
A ₃		0.25	—	
b	0.35	0.4	0.5	
С	0.11	0.16	0.26	
D	2.8	2.95	3.1	
E	1.5	1.6	1.8	
е		0.95		
HE	2.5	2.8	3.0	
L	0.3		0.7	
L ₁	0.1		0.5	
LP	0.2		0.6	
Х			0.05	
У			0.05	
Q —		0.3		

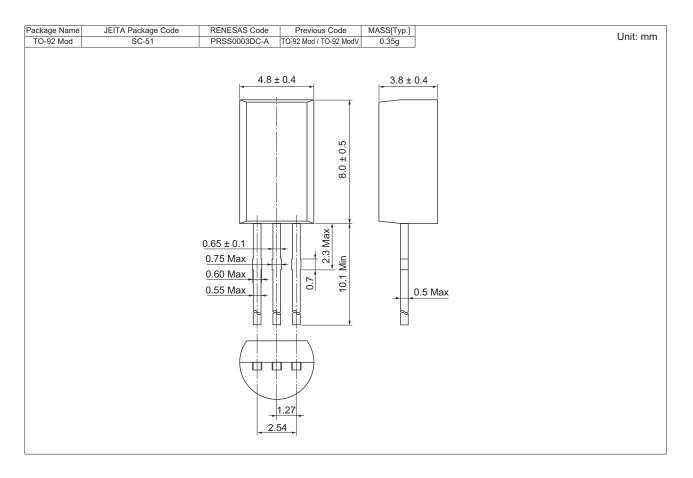

© 2013 Renesas Electronics Corporation. All rights reserved.

JEITA Package Code	RENESAS Code	Previous Code	MASS (Typ) [g]
SC-59A	PLSP0003ZB-A	MPAK(T) / MPAK(T)V	0.011


Reference	Dimensions in millimeters				
Symbol	Min	Nom	Max		
A	1.0		1.3		
A ₁	0		0.1		
A ₂	1.0	1.1	1.2		
A ₃	—	0.25	—		
b	0.35	0.4	0.5		
С	0.1	0.16	0.26		
D	2.7	—	3.1		
E	1.35 1.5		1.65		
е		0.95	—		
HE	2.2	2.8	3.0		
L	0.35		0.75		
L ₁	0.15		0.55		
LP	0.25		0.65		
Х			0.05		
Q		0.3			

© 2013 Renesas Electronics Corporation. All rights reserved.




HA17431 Series

ickage Name	JEITA Package Code	RENESAS Code	Previous Code	MASS[Typ.]		11.2
UPAK	SC-62	PLZZ0004CA-A	UPAK / UPAKV	0.050g		Unit: mr
	ľ	4.5 ± 0.1 1.8 Max	1.5 ± 0.1		(1 5)	
			T 0.44 M		(1.5)	
	_			(2.5)		
	<u>0.53 Ma</u>			++		
	0.48 Max		<u> </u>	<u>lax 0)</u>		
		3.0				
	L	<u>ф</u> ф_ф/				

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
- technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics may way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-40-588-8000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-989-5041, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Milboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700, Fax: +44-1628-651-804 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-651-804 Renesas Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-10-253-1155, Fax: +86-10-253-7679 Renesas Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Tower, S55 LanGao Rd., Putuo District, Shanghai, China Tel: +86-10-253-1155, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Unit 1001-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +86-10-280-5175, Fax: +862-21-2226-0999 Renesas Electronics Hong Kong Limited Unit 1001-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +880-24175-9000, Fax: +862-24175-9670 Renesas Electronics Mang Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +882-74175-9600, Fax: +862-24175-9670 Renesas Electronics Mangyais Sdn.Bhd. Unit 906, Block B, Menara Amoorp, Amoorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +652-3150, Fax: +65-27300, Fax: +65-27300, Fax: +65-27300, Fax: +60-37955-9510 Renesas Electronics Korea Co., Ltd. 12F, 234 Teheran-ro, Gangham-Gu, Seoul, 135-080, Korea Tel: +65-27300, Fax: +60-57955-9510