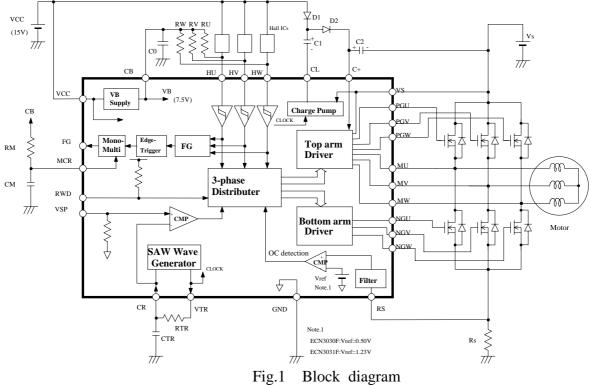

ECN3030F/3031F is a driver IC for a three-phase bridge inverter which has MOSFETs or IGBTs for the outputs. Especially, it is very suitable for controlling the speed of three-phase DC brushless motors to which converted AC100~115V power supplies are applied. The internal block diagram is shown in Fig. 1.


Functions

- * Integrated charge pump circuit
- * Integrated 3-phase distributor circuit
- * Integrated PWM circuit
- * Integrated over current protection circuit
- * Integrated rotating direction sense circuit
- * Integrated FG circuit

Features

- * Speed control for a 3-phase DC brushless motor is available with an external microprocessor.
- * Bottom arm circuits can be operated in 20kHz chopping frequency of PWM.

HITACHI

1. General

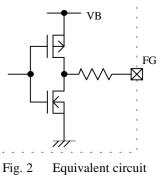
- (1) Type ECN3030F, ECN3031F
- (2) Application 3-Phase DC Brushless Motor
- (3) Structure Monolithic IC
- (4) Package FP-28DJ(JEDEC)

2. Maximum Allowable Ratings (Ta=25°C)

No.	Items	Symbols	Terminal	Ratings	Unit	Condition
1	Output Device	VSM	VS	250	V	
	Breakdown Voltage		MU,MV,MW			
2	Supply Voltage	VCC	VCC	18	V	
3	Input Voltage	VIN	VSP,RS,RWD HU,HV,HW	-0.5 ~ VB+0.5	V	
4	Operating Junction Temperature	Тјор		-20 ~ +125	°C	Note 1
5	Storage Temperature	Tstg		-40 ~ +150	°C	

Note1. Thermal resistance (Rj-a) is approximately 100°C/W. (When ICs are installed on a print board.) The value of this resistance is determined by the result of the trial product.

3. Recommended Operating Conditions


No.	Items	Symbols	Terminal	MIN	TYP	MAX	Unit	Condition
1	Supply Voltage	VS	VS	10	141	185	V	Within allowable rating at Tjop
2	-	VCC	VCC	13.5	15	16.5	V	Tatilig at 1jop

 4. Electrical Characteristics (Ta=25°C) Unless otherwise specified, VCC=15V, VS=141V Suffix T; Top arm B; Bottom arm Suffix *;U,V,W Phase

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				_						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	No.	Items	Symbols		MIN	TYP	MAX	Unit	Condition	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Standby Current			-	2.0		mA	VSP <vsawl< td=""></vsawl<>	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					-	3.0	6.0	mA	HU=L	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3	Output Source Current	IO+T		30	50	100	mA	20V between C+ an	nd PG*
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					130	200	300	mA	10V between VCC	and NG*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	Output Sink Current	IO-T		130	200	300	mA	10V between PG* a	und M*
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6		IO-B		130	200	300	mA	10V between NG* a	and GND
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	7		VOHT	C+,PG*	-	4.5	6.0	V		
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	8		VOHB	VCC,NG*	-	-	0.2	V		
$ \begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	9	1	VOLT	PG*,M*	-	-	0.2	V		
VTRterminalImage: constraint of the sector of the	10		VOLB	NG*,GND	-	-	0.2	V		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	-	RVTR	VTR	-	200	400	Ω	IVTR=1mA	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	Amplitude Level of	VSAWH	CR	4.9	5.4	6.1		Note 2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	SAW wave	VSAWL	CR	1.7	2.1	2.5	V		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	14		VSAWW	CR	2.8	3.3	3.8	V	Note.5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15	Reference Voltage for	Vref	RS	0.45	0.5	0.55	V	only for ECN30	30F
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Over Current detection			1.107	1.230	1.353	V	only for ECN30	31F
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	Input Voltage	VIH	HU,HV,HW	3.5	-	-	V		
Image: heat stateImage: heat stateImage: heat stateheat stateheat stateheat stateheat stateheat state19III.HU,HV,HW RWD-100 RWDμAHU,HV,HW,RWD=0V Note 1 Pull Up Resistance20VB Output VoltageVBCB6.87.58.2VIB=0mA21VB Output CurrentIBCB25mAdelta VB≤0.2V22Output Resistance at FG terminalRFGFG-250400ΩNote 323Reference Voltage for FG pulseVref2MCRVB×2/3 ×0.95VB×2/3VB×2/3 ×1.05VNote 4	17		VIL	RWD	-	-	1.5	V		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	Input Current	IIH	VSP	-	-	50	μΑ	VSP=5.0V Note	1
RWDRWDNote 1 Pull Up Resistance20VB Output VoltageVBCB6.87.58.2VIB=0mA21VB Output CurrentIBCB25mAdelta VB≤0.2V22Output Resistance at FG terminalRFGFG-250400ΩNote 323Reference Voltage for FG pulseVref2MCRVB×2/3VB×2/3VB×2/3VNote 4									Pull Down Resistant	ce
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19		IIL		-100	-	-	μΑ		
21 VB Output Current IB CB 25 - - mA delta VB≤0.2V 22 Output Resistance at FG terminal RFG FG - 250 400 Ω Note 3 IFG=1mA 23 Reference Voltage for FG pulse Vref2 MCR VB×2/3 ×0.95 VB×2/3 VB×2/3 ×1.05 V Note 4	20	VB Output Voltage	VB		6.8	7.5	8.2	V	-	
22 Output Resistance at FG terminal RFG FG - 250 400 Ω Note 3 IFG=1mA 23 Reference Voltage for FG pulse Vref2 MCR VB×2/3 ×0.95 VB×2/3 ×1.05 VB×2/3 ×1.05 V Note 4		· · ·				-	-	mA		
23 Reference Voltage for FG pulse Vref2 MCR VB×2/3 ×0.95 VB×2/3 ×1.05 VB×2/3 ×1.05 V Note 4	22	Output Resistance at	RFG	FG	-	250	400	Ω	Note 3	
	23	Reference Voltage for	Vref2	MCR		VB×2/3		V		
	24	Charge Pump Voltage	VCP	C+,VS	13.0	14.5		V	At stand-by N	lote 6

Note1. The pull up resistance and the pull down resistance are typically 200 k Ω .

- Note2. Please see Note 2 in item 6 for determining the frequency of SAW wave.
- Note3. The equivalent circuit at FG terminal is shown in Fig. 2
- Note4. Please see Note 3 in item 6 for determining the FG output pulse width.
- Note5. The amplitude of SAW(VSAWW) is determined by the following equation,
 - VSAWW=VSAWH-VSAWL (V)
- Note6. The charge pump voltage (VCP) is determined by the voltage between C+ and VS.

around FG

5. Function

5.1 Truth Table

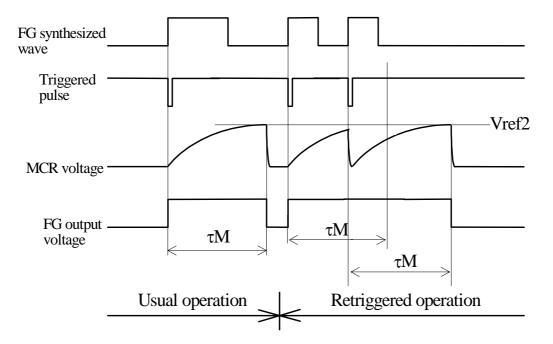
	Inp	out		U Phase		V P	hase	W Phase	
RWD	HU	HV	HW	Тор	Bottom	Тор	Bottom	Тор	Bottom
Н	Н	L	Н	L	Н	Н	L	L	L
Н	Н	L	L	L	Н	L	L	Н	L
Н	Н	Н	L	L	L	L	Н	Н	L
Н	L	Н	L	Н	L	L	Н	L	L
Н	L	Н	Н	Н	L	L	L	L	Н
Н	L	L	Н	L	L	Н	L	L	Н
L	Н	Н	L	L	L	Н	L	L	Н
L	Н	L	L	Н	L	L	L	L	Н
L	Н	L	Н	Н	L	L	Н	L	L
L	L	L	Н	L	L	L	Н	Н	L
L	L	Н	Н	L	Н	L	L	Н	L
L	L	Н	L	L	Н	Н	L	L	L
-	L	L	L	L	L	L	L	L	L
-	Н	Н	Н	L	L	L	L	L	L

Note1. Top arm : Output voltage for between PG* and M*.

Bottom arm : Output voltage for between NG* and GND.

Note2. It is possible to change the rotation direction of the motor by putting a signal into RWD terminal. A method of using is shown in item 5.7.

5.3 PWM Operation

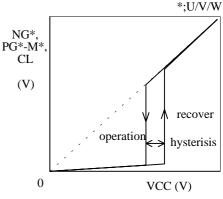

The PWM signal is produced by comparing the input voltage at VSP terminal with the voltage from the internal SAW wave. The duty of the PWM signal can be changed linearly by the triangular wave amplitude level, from the minimum point of VSAWL to the maximum point of VSAWH, and when the level is under VSAWL, the duty becomes 0%, and when the level is over VSAWH, the duty becomes 100%. In addition, chopping with the PWM signal is operated in the bottom arm circuit.

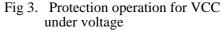
5.4 Over Current Limiting Operation

This IC detects over current by checking the voltage drop at the external resistance RS. When the input voltage at RS terminal exceeds the internal reference voltage(Vref), this IC turns off the output of the bottom arm circuit. After over current detection, reset operation is done at every period of the PWM signal.

5.5 FG operation

One shot pulse is put out at this terminal synchronized with the rising edge of the synthesized signal of the hole signal HU, HV, HW. The pulse width τM is decided by the constant number which is determined by R and C at MCR terminal(See No.6 Standard Application.). One shot pulse is produced in a mono-multi circuit. This circuit has a retrigger feature which keeps the output signal high when a trigger is input during high signal of FG output.




5.6 VCC Under Voltage Detection Operation

When VCC becomes lower than the determined voltage, all arms operation and the charge pump operation are forced to stop. The detection voltage is typically 11.5V, and it also has a hysterisis of 0.5V. However, there may be a case when the operation is canceled under 2V of VCC.

5.7 Rotating Direction of the Motor

The rotating direction of the motor can be changed by inputting "H" or "L" signal to RWD terminal. Please do not change this signal at operation. This may cause short through of the output Device. However, it is OK if the VSP input voltage is below VSAWL(1.7V typ.) before RWD input voltage change so that the short through is avoided.

6. Standard Application

6.1 External Parts

Component	Recommended Value	Usage	Remark
C0	More than 0.22 µF	for smoothing Internal	stress voltage is VB
		Power Supply(VB).	
C1,C2	$1.0 \ \mu F \pm 20\%$	for charge pump	stress voltage is VCC
D1,D2	Hitachi DFG1C4(glass mold)	for charge pump	400V/1.0A
	Hitachi DFM1F4(resin mold)		trr≤100ns
	or equivalent parts		
Rs	Note 1	for current limiting	
CTR	$1800 \text{ pF} \pm 5\%$	for PWM	Note 2
RTR	$22 \text{ k}\Omega \pm 5\%$		
RU,RV,RW	5.6 k Ω ± 5%	pull up resistance	
СМ	More than 1000pF	for Output Pulse width at	Note 3
RM	More than 10 k Ω	FG terminal	

Note1. The start up current is limited by the following equation.

IO = Vref / Rs (A)

Note2. The PWM frequency is approximately determined by the following equation. At the recommended Value of CR, the error factor of IC is about 10%.

 $fPWM = -1 / (2C \times R \times Ln(1-3.5/5.5))$; Ln is natural logarithm

$$= 0.494 / (C \times R)$$
 (Hz)

Note3. The FG output pulse width is determined approximately by the following equation.

 $\tau M \ge 10 \mu s$ should be necessary.

 $\tau M = -(CM \times RM \times Ln(1 - VB \times 2/3/VB))$ = 1.1×CM×RM (s)

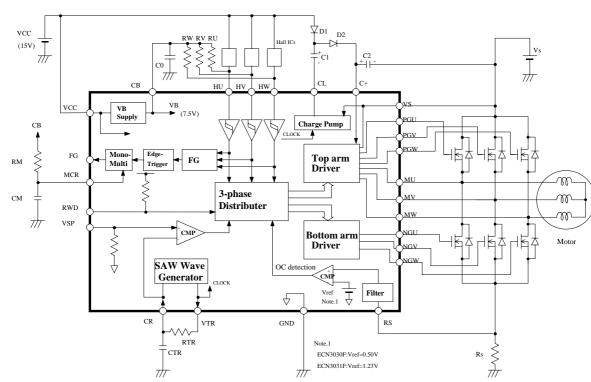
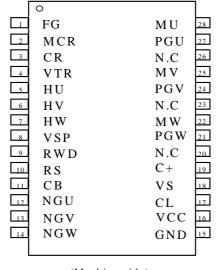
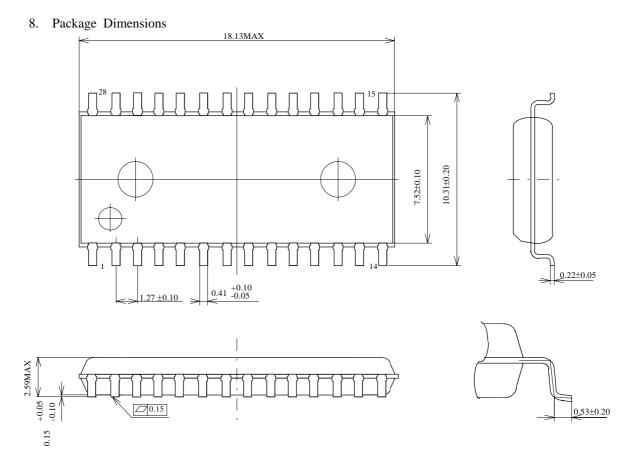



Fig.4 Block diagram with external parts

6.2 Supply Voltage Sequence


The order for turning on power supplies should be (1)Vcc, VS (2)VSP. The order for turning off should be (1)VSP (2)VS, Vcc. When the order is mistaken, there may be a case when the external bridge circuit is broken.

7. Terminal

(Marking side)

Fig. 5 Pin connection

